

DFG Deutsche Forschungsgemeinschaft

Physics in 1900

Classical Mechanics

Translation, Rotation, Pendulum, Planetary Motion, Gravity, Newton, Kepler, Copernikus, Galilei, ...

Kinetic Gas Theory

Explanation of Heat with Elements of Classical Mechanics

Electric and Magnetic Phenomena

Electric Fields, Magnetic Fields, Current, Charge, Induction

Faraday, Maxwell, Hertz, Gauss, Ampere, Volta u.a.

Physics in 1900

- General opinion
- Basic theories known
- Only few missing pieces
- more experiments will fill voids

TECHNISCHE UNIVERSITÄT DARMSTADT

Historical Overview

Year	Theory	Experiment
1885		Balmer Series
1900	Quantization Hypothesis (Planck)	
1902		Experiments Photo effect (Lenard)
1905	Photo effect (Einstein)	
1909		Single Photon Experiments (Taylor)
1911		Cloud chamber
1913	Atomic modell (Bohr)	
1914		Franck-Hertz Experiment
1916	Atomic model (Sommerfeld)	
1921		Stern-Gerlach Experiment
1922		Compton effect
1924	Wave character of matter (deBroglie)	
1925	Spin, Formulations of QM by Schrödinger, Heisenberg, Dirac	
1926	Schrödinger Equation	Electron interference
1935	Entanglement, Einstein-Podolsky-Rosen-Paradox	Discovery of the Neutron

Historical Overview

	Ineory	Experiment
1885		Balmer Series
1900	Quantization Hypothesis (Planck)	
1902		Experiments Photo effect (Lenard)
1905	Photo effect (Einstein)	
1909		Single Photon Experiments (Taylor)
1911		Cloud chamber
1913	Atomic modell (Bohr)	
1914		Franck-Hertz Experiment
1916	Atomic model (Sommerfeld)	
1921		Stern-Gerlach Experiment
1922		Compton effect
1924	Wave character of matter (deBroglie)	
1925 Sp	oin, Formulations of QM by Schrödinger, Heisenberg, Dirac	
1926	Schrödinger Equation	Electron interference
1935	Entanglement, Einstein-Podolsky-Rosen-Paradox	Discovery of the Neutron

Quantum Physics: Interaction of Light with Atoms (Einstein 1917)

3. Zur Quantentheorie der Strahlung von A. Einstein.

Die formale Ähnlichkeit der Kurve der chromatischen Verteilung der Temperaturstrahlung mit dem Maxwell'schen Geschwindigkeits-Verteilungsgesetz ist zu frappant, als daß sie lange hätte verborgen bleiben können. In der Tat wurde bereits W. Wien in der wichtigen theoretischen Arbeit, in welcher er sein Verschiebungsgesetz

$$arrho =
u^3 \operatorname{f}\left(-rac{
u}{\overline{\mathrm{T}}}
ight)$$

[2] ableitete, durch diese Ähnlichkeit auf eine weitergehende Bestimmung der Strahlungsformel geführt. Er fand hiebei bekanntlich die Formel

$$\rho = \alpha v^3 e^{-kT}$$

welche als Grenzgesetz für große Werte von _ auch heute als

- [3] richtig anerkannt wird (Wien'sche Strahlungsformel). Heute wissen wir, daß keine Betrachtung, welche auf die klassische Mechanik und Elektrodynamik aufgebaut ist, eine brauchbare Strahlungs-[4] formel liefern kann, sondern daß die klassische Theorie notwendig
- auf die Reileigh'sche Formel

UNIVERSITÄT

D U I S B U R G E S S E N

$$\varrho = \frac{k \alpha}{h} \nu^2 T$$

[5] führt. Als dann Planck in seiner grundlegenden Untersuchung seine Strahlungsformel

$$\rho = \alpha v^3 \frac{1}{\frac{hv}{kT} - 1}$$

[1]

MAAA

16. May 1960 - the first laser

Theodore Maiman Inventor of the Ruby Laser (1960)

Lasers Today

DFG Deutsche Forschungsgemeinschaft

Ubiquity of the Laser

Spiegel, Alsglobal Wikimedia, NASA, Sources:

Other Technical Developments based on QM knowledge (Examples)

DFG Deutsche Forschungsgemeinschaft

TECHNISCHE UNIVERSITÄT DARMSTADT

Wikimedia, bgr.com Sources

Basics of Quantum Mechanics

- Many parameters are quantized
- photons, energy states, angular momentum, spin
- Measurement influences system
- eigenstate of an measurement
- Probabilistic Interpretation (!)
- Results of measurements cannot be predicted, only probabilities for outcomes
- Uncertainty relation
- Non-commuting operators cannot be simultaneously measured with arbitrarily high accuracy
- Complementarity: Wave-Particle Duality
- Unknown Quantum States cannot be copied (No-Cloning Theorem)

How do we know it's correct?

Wave-Particle Duality \Rightarrow Double Slit Experiment

Superposition ⇒ Schrödinger's Cat

Entanglement

Einstein-Podolsky-Rosen Paradox \Rightarrow (Bell Inequalities)

Experiments

DFG Deutsche Forschungsgemeinschaft

TECHNISCHE UNIVERSITÄT DARMSTADT

Historical Overview - why did it take so long?

Year	Theory	Experiment
1935	Reality, Locality, Entanglement	
1960		Invention of the Laser
1964	Bell's Inequality	
1972		First Bell-Experiment
1975		Cooling of Ions
1982	Simulation of Quantum Systems	
	No-Cloning Theorem	
1983		Laser Cooling of Atoms
1984	BB84-Protocol (Complementarity)	
1985	1st Quantum Algorithm	One-Atom Maser
1989	GHZ States	
1991	Ekert-Protocol (Entanglement)	
1993	Quantum-Teleportation (Entanglement)	Quantum Cryptography
1994	Shors Factorization Algorithm	
1995	Quantum Computer (Cirac, Zoller)	Bose-Einstein-Condensation
		Entangled Photons, Quantum Logic with Ions
1996	Grovers Quantum Algorithm	Entangled States (lons and QED)

Historical Overview - why did it take so long?

1972		First Bell-Experiment
1975		Cooling of Ions
1982	Simulation of Quantum Systems	
	No-Cloning Theorem	
1983		Laser Cooling of Atoms
1984	BB84-Protocol (Complementarity)	
1985	1st Quantum Algorithm	One-Atom Maser
1989	GHZ States	
1991	Ekert-Protocol (Entanglement)	
1993	Quantum-Teleportation (Entanglement)	Quantum Cryptography
1994	Shors Factorization Algorithm	
1995	Quantum Computer (Cirac, Zoller)	Bose-Einstein-Condensation
		Entangled Photons, Quantum Logic with Ions
1996	Grovers Quantum Algorithm	Entangled States (lons and QED)
	Error correcting quantum codes	
1997		Quantum Teleportation
2001		Quantum Computer (7-bit, Factorisation of 15)
2015		Definitive Test of Bell inequalities

... back to the future (actually today)

Quantum Information Processing

Quantum Communication

Quantum Teleportation

Quantum Computing

Quantum Key Distribution

TECHNISCHE UNIVERSITÄT DARMSTADT

UNIVERSITÄT D U I S B U R G E S S E N

... back to the future (actually today)

Quantum Information Processing

Quantum Computing

Basic Ingredients: Superposition + Entanglement + Interference + No-Cloning

Quantum Key Distribution

What, if we find a different theory?

Quantum Mechanics and its predictions must be a part of it.

Just like Newtonian mechanics is part of the theory of special relativity in the limit of small velocities.

Quantum Key Distribution

Alice

Cryptography asymmetric key symmetric key

Information theoretical Security: Vernam One-Time-Pad Alice random one time use length of message

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, Rev. Mod. Phys 74 (2002) 145

Bob

Quantum Channel

Security proofs exist for most protocols

UNIVERSITÄT

D U I S B U R G E S S E N

First Implementation of the BB84 protocol 1992

J. Cryptology (1992) 5: 3–28

Journal of Cryptology

© 1992 International Association for Cryptologic Research

Experimental Quantum Cryptography¹

Charles H. Bennett IBM Research, Yorktown Heights, New York, NY 10598, U.S.A.

François Bessette Gilles Brassard, and Louis Salvail Départment IRO, Université de Montréal, C.P. 6128, succursale "A", Montréal (Québec), Canada H3C 3J7

John Smolin Physics Department, University of California at Los Angles, Los Angeles, CA 90024, U.S.A.

Past Development in a Nutshell

Protocols

BB84

Ekert91

Phase-Timebin Entanglement

COW

Decoy

...

CW single-photon SPDC

weak coherent pulses

A. Ekert

Transmission Medium Air

Optical Fiber

Detectors

- PMT
- APD

•••

nist.gov

Missing: Quantum Repeater \Rightarrow Trusted Nodes (for long distance)

Deutsche Forschungsgemeinschaft

TECHNISCHE UNIVERSITÄT DARMSTADT

UNIVERSITÄT D U I S B U R G E S S E N

Quantum Key Distribution

Th. Jennewein et al, Phys. Rev. Lett. **84** (2000) 4729

Image of the "Venus of Willendorf"

Decrypted: (c)

Anton Zeilinger, Univ. Vienna

Quantum Key Distribution: April 2004

Sank Austria Creditanstalt	T	EX.84	3000.00
00290620400	12000	E.	BA-CA
UNIVERSITAT-WIE	EN		
finitisaetina frivary aglifiantes bothaetinatins anthathinatins	enter Anne et Demonstration de	10 F	Spende and Institut fur Experimental-
51381381781	12000		physik
Bob Havelka		-	
. 1. 1. 1. 1.1	11111		
Automatical and the second and the s	PA SAMES WITH A ROAMA, TA SA	ar jan	StaDt Wies
		ALALIZZA ALALIZZA	

TECHNISCHE UNIVERSITÄT DARMSTADT

Quantum Key Distribution: Swiss Elections 2007

Keep Your Business Moving

Securely connect your data with almost any device on almost any network.

Science & Technology

Quantum cryptography Heisenberg's certainty principle

Oct 18th 2007 From The Economist print edition

The Swiss are using quantum theory to make their election more secure

HANGING chads. Ballot stuffing. Gerrymandering. Such dirty tricks enfeeble democracy. But the security of the votes cast in Geneva during Switzerland's general election on October 21st is guaranteed. The authorities will use quantum cryptography—a way to transmit information that detects eavesdroppers and errors almost immediately-to ensure not only that votes are kept secret but also that they are all counted.

In quantum cryptography, as in most long-distance data transmission, the information is carried by photons, the particles which compose light and other sorts of electromagnetic radiation. These particular photons, however, are manipulated in a special way. The simplest example is when the sender (whom cryptographers usually call Alice) dispatches a stream of them to the receiver (who is known as Bob). These photons will have one of two modes. In the first, a photon is polarised either vertically or horizontally. In the second, it is polarised diagonally-plus or minus 45°. In the first mode, a photon polarised vertically represents a "0" and one polarised horizontally represents a "1". Similarly, in the second mode polarisation at +45° represents "0" and at -45°, "1".

The Economist, Oct. 18th 2007

Quantum Networks: SECOQC - 2008

similar networks by DARPA, China, Geneva, Tokyo, Los Alamos, ...

TECHNISCHE UNIVERSITÄT DARMSTADT

Quantum Key Distribution and the Race for Distance

STTERS

6.6 bits/s

nature photonics

PUBLISHED ONLIN

200 km:

405 km:

307 km:

~900 bits/s 3.18 bits/s Provably secure and practical quantum distribution over 307 km of optical fibre

Boris Korzh¹*, Charles Ci Wen Lim¹*, Raphael Houlmann¹, Nicolas Gisin¹, Ming Jun Li², Daniel Nolan², Bruno Sanguinetti¹, Rob Thew¹ and Hugo Zbinden¹

PHYSICAL REVIEW LETTERS 121,

Editors' Suggestion

Featured in Physics

Secure Quantum Key Distribution over 421 km of Optical Fiber

Alberto Boaron,^{1,*} Gianluca Boso,¹ Davide Rusca,¹ Cédric Vulliez,¹ Claire Autebert,¹ Misael Caloz,¹ Matthieu Perrenoud,¹ Gaëtan Gras,^{1,2} Félix Bussières,¹ Ming-Jun Li,³ Daniel Nolan,³ Anthony Martin,¹ and Hugo Zbinden¹ ¹Group of Applied Physics, University of Geneva, Chemin de Pinchat 22, 1211 Geneva 4, Switzerland ²ID Quantique SA, Chemin de la Marbrerie 3, 1227 Carouge, Switzerland ³Corning Incorporated, Corning, New York 14831, USA

(Received 10 July 2018; published 5 November 2018)

R. URSIN¹*, F. TIEFENBACHER^{1,2}, T. SCHMITT-MANDERBACH^{3,4}, H. WEIER⁴, T. SCHEIDL^{1,2}, M. LINDENTHAL², B. BLAUENSTEINER¹, T. JENNEWEIN², J. PERDIGUES⁵, P. TROJEK^{3,4}, B. ÖMER⁶, M. FÜRST⁴, M. MEYENBURG⁶, J. RARITY⁷, Z. SODNIK⁵, C. BARBIERI⁸, H. WEINFURTER^{3,4} AND A. ZEILINGER^{1,2*}

Nature Physics **3** (2007) 481

PHYSICAL REVIEW LETTERS 120, (

Editors' Suggestion

Featured in Physics

Satellite-Relayed Intercontinental Quantum Network

UNIVERSITÄT

D U I S B U R G E S S E N

Sheng-Kai Liao,^{1,2} Wen-Qi Cai,^{1,2} Johannes Handsteiner,^{3,4} Bo Liu,^{4,5} Juan Yin,^{1,2} Liang Zhang,^{2,6} Dominik Rauch,^{3,4} Matthias Fink,⁴ Ji-Gang Ren,^{1,2} Wei-Yue Liu,^{1,2} Yang Li,^{1,2} Qi Shen,^{1,2} Yuan Cao,^{1,2} Feng-Zhi Li,^{1,2} Jian-Feng Wang,⁷ Yong-Mei Huang,⁸ Lei Deng,⁹ Tao Xi,¹⁰ Lu Ma,¹¹ Tai Hu,¹² Li Li,^{1,2} Nai-Le Liu,^{1,2} Franz Koidl,¹³ Peiyuan Wang,¹³ Yu-Ao Chen,^{1,2} Xiang-Bin Wang,² Michael Steindorfer,¹³ Georg Kirchner,¹³ Chao-Yang Lu,^{1,2} Rong Shu,^{2,6} Rupert Ursin,^{3,4} Thomas Scheidl,^{3,4} Cheng-Zhi Peng,^{1,2} Jian-Yu Wang,^{2,6} Anton Zeilinger,^{3,4} and Jian-Wei Pan^{1,2}

Satellite based Quantum Key Distribution

S-K. Liao et al., Nature **549** (2017), 42

Satellite-to-ground quantum key distribution

Interkontinental - Quantum Key Distribution

PHYSICAL REVIEW LETTERS 120, 030501 (2018)

Satellite-Relayed Intercontinental Quantum Network

Sheng-Kai Liao,^{1,2} Wen-Qi Cai,^{1,2} Johannes Handsteiner,^{3,4} Bo Liu,^{4,5} Juan Yin,^{1,2} Liang Zhang,^{2,6} Dominik Rauch,^{3,4} Matthias Fink,⁴ Ji-Gang Ren,^{1,2} Wei-Yue Liu,^{1,2} Yang Li,^{1,2} Qi Shen,^{1,2} Yuan Cao,^{1,2} Feng-Zhi Li,^{1,2} Jian-Feng Wang,⁷ Yong-Mei Huang,⁸ Lei Deng,⁹ Tao Xi,¹⁰ Lu Ma,¹¹ Tai Hu,¹² Li Li,^{1,2} Nai-Le Liu,^{1,2} Franz Koidl,¹³ Peiyuan Wang,¹³ Yu-Ao Chen,^{1,2} Xiang-Bin Wang,² Michael Steindorfer,¹³ Georg Kirchner,¹³ Chao-Yang Lu,^{1,2} Rong Shu,^{2,6} Rupert Ursin,^{3,4} Thomas Scheidl,^{3,4} Cheng-Zhi Peng,^{1,2} Jian-Yu Wang,^{2,6} Anton Zeilinger,^{3,4} and Jian-Wei Pan^{1,2}

FIG. 1. Illustration of the three cooperating ground stations (Graz, Nanshan, and Xinglong). Listed are all paths used for key generation and the corresponding final key length.

PHYSICAL REVIEW LETTERS 120, 030501 (2018)

Featured in Physics

Satellite-Relayed Intercontinental Quantum Network

Sheng-Kai Liao,^{1,2} Wen-Qi Cai,^{1,2} Johannes Handsteiner,^{3,4} Bo Liu,^{4,5} Juan Yin,^{1,2} Liang Zhang,^{2,6} Dominik Rauch,^{3,4} Matthias Fink,⁴ Ji-Gang Ren,^{1,2} Wei-Yue Liu,^{1,2} Yang Li,^{1,2} Qi Shen,^{1,2} Yuan Cao,^{1,2} Feng-Zhi Li,^{1,2} Jian-Feng Wang,⁷ Yong-Mei Huang,⁸ Lei Deng,⁹ Tao Xi,¹⁰ Lu Ma,¹¹ Tai Hu,¹² Li Li,^{1,2} Nai-Le Liu,^{1,2} Franz Koidl,¹³ Peiyuan Wang,¹³ Yu-Ao Chen,^{1,2} Xiang-Bin Wang,² Michael Steindorfer,¹³ Georg Kirchner,¹³ Chao-Yang Lu,^{1,2} Rong Shu,^{2,6} Rupert Ursin,^{3,4} Thomas Scheidl,^{3,4} Cheng-Zhi Peng,^{1,2} Jian-Yu Wang,^{2,6} Anton Zeilinger,^{3,4} and Jian-Wei Pan^{1,2}

<i>Micius –</i> Xinglong, China					
	Sifted key	QBER	Final key		
017	279 kb	1.2%	61 kb		
017	609 kb	1.1%	141 kb		
017	848 kb	1.1%	198 kb		
25	OQKm				

UNIVERSITÄT

75 min-Video Conference (2 GByte)

1000 km: 3300 bits/s

600 km: 9000 bits/s

change of AES-128 key every second 70 kB of quantum key used

in cooperation with

TU Darmstadt | CASED

DFG Deutsche Forschungsgemeinschaft

TECHNISCHE UNIVERSITÄT DARMSTADT

Quantum Hub

QKD in cooperation with Deutsche Telekom

September 2019 | Thomas Walther | Laser and Quantum Optics | TU Darmstadt | 27

any 2 parties can exchange key investigation of scalability security performance side channels

Basic Idea

UNIVERSITÄT DUISBURG ESSEN

Quantum Hub

related approach using polarisation entanglement:

S. Wengerowsky, S.K. Joshi, F. Steinlechner, H. Hübel and R. Ursin, Nature 564 (2018) 225 E.Y Zhu, C. Corbari, A. Gladyshev, P.G. Kazansky, H-K. Lo and L. Qian, JOSA B 36 (2019) B1

Collaboration with Deutsche Telekom

in cooperation with

Our QKD System @ Deutsche Telekom

Source (2nd generation)

Preliminary Tests

Setup of Equipment at Telekom Lab (since about 6 months Goals

- Test of Components for Quantum Hub
- Realistic Telecom Environment

Acoustic Noise and Temperature Instability

26 km of Fiber incl. Splices and Connectors

1st Preliminary Tests

- Temperature control working
- Time basis working
- Phase basis can be sufficiently well controlled

Temperature is slowly sweeped.

Next Steps

.....

Key management and post-processing

Improvements & stability

Influence of environment

Next hardware generation

in cooperation with

Quantum Key Distribution

Quantum Key Distribution secure technology implementation is key device independent security possible large distance / intercontinental key distribution is possible via trusted nodes quantum repeater needed network aspects (more than just Alice and Bob) relatively unexplored

TU Darmstadt Team - Who does the work

		Deele Jer Oture
PhD Stud	lents:	Bachelor Stud
	Oleg Nikiforov	Leor
	Erik Fitzke	Leor
		Seba
		Yanr
		Till C
Master S	tudents	
	Maximilian Tippmann	
	Daniel Hofmann	"Miniforschei
	Kai Roth	Tobi
	Julian Nauth	

dents:

n Baack hard Wegert astian Meier nic Wolf Dolejsky

r": as Wieczorek

TECHNISCHE UNIVERSITÄT DARMSTADT

