
Obtaining Provably Secure
Services from Formally Verified Remote

Attestation

Gene Tsudik1

Joint work with: Ivan De Oliveira Nunes1, Karim Eldefrawy2, Norrathep Rattanavipanon1

University of California Irvine1, SRI International2

1

2

In this talk, I’m skipping:

• Talk Outline
• Background on IoT/CPS devices
• Detailed motivation for securing devices

3

IoT (In)Security

Low-end IoT/CPS Devices
(amoebas of the computing world)

● Designed for: Low Cost, Low Energy, Small Size, High Scale
● Memory: Program (≈32kB) and Data (≈2-16 kB)
● Single core CPU (8-16MHz; 8 or 16 bits)
● Simple Communication Interfaces for IO (a few kbps)
● Examples: TI MSP-430, AVR ATMega32 (Arduino)

4

Attack/Compromise Detection vs. Prevention

5

• Prevention is hard & expensive:
• Simple devices can not perform fancy crypto, run anti-malware,

verify certificates, etc.

• Detection is the next best thing:
• Goal: Remotely measure internal state of device and detect

anomalous/compromised states

Remote Attestation (RA)

6

• A general approach for detecting malware presence on devices

• Two-party interaction between:
• Verifier: trusted entity
• Prover: potentially infected and untrusted remote IoT device

• Goal: measure current internal state of prover

(1) Challenge

(3) Response

(2) Authenticated
memory measurement
(via some integrity
ensuring function)

(4) Verify
response

Verifier Prover

(2) typically
implemented as a MAC
over prover’s memory

7

Adversary might be in
full control of Prover’s
software state

RA Interaction

Adversarial Model [DAC’15]

A. Remote malware adversary
• Exploits various vulnerabilities to inject malware from afar
• Exploits scale/popularity, probably not narrowly targeted

B. Local communication adversary
• Eavesdrops on, and manipulates, communication channel(s)
• Note: A can lead to B…

C. Physical adversary (up close and personal)
• Non-Invasive: mounts hardware side-channel attacks
• Invasive: (1) read-only, (2) hw-modifying

8

RA Techniques
• Hardware-based

• Effective, but…
• Dedicated hardware support (e.g., a TPM)
• Expensive & overkill for lower-end devices

• Software-based
• Relies on precise timing measurement and no real-time accomplices
• Unrealistic assumptions for remote prover except for peripheral/legacy devices

• Hybrid
• SW/HW co-design
• Minimal hardware impact
• Best fit for resource constrained IoT devices?
• Examples: SMART, TrustLite, TyTaN, SeED, HYDRA, ERASMUS, SMARM

9

Why bother with formally verified RA?
• FV promises higher confidence and concrete security guarantees

(towards provable security for concrete implementations)

• Current RA techniques do not offer concrete assurances and rigor stemming from FV
to guarantee security of designs and their implementations

• Since existing techniques are not systematically designed from abstract models,
soundness and security are hard to argue formally

• Subtle issues are easy to miss (indeed they have been!)

• Verification of hybrid (HW/SW) designs is both important and challenging

10

Overview of
VRASED:

A Formally Verified
RA Architecture

11

Verification Approach

12

Secure RA

Sub-Property
2

Sub-Property
1

Sub-Property
3

HW HW SW

1) Define end-to-end (general)
secure RA property

2) Break it down into multiple
sub-properties

3) Prove that sub-properties
together imply end-to-end
RA security

4) Implement VRASED HW/SW
design

5) Prove that each HW/SW
module satisfies each sub-
property

Based on (1-5), VRASED
implementation satisfies
secure RA propertyVRASED Implementation

Notation

13

14

RA Security

Intuition behind sub-properties

Authenticated memory
measurement requires a key è
If this key is leaked, the scheme is
broken

Potential Malware
residing inside the
device should not
access the key

Safe Execution:
- Key not leaked during

execution of trusted code
- Malware cannot “escape”

detection

15

HW Implementation

16

HW-Mod monitors a
set of 7 CPU signals
(wires) triggering a

reset if any sub-
property is violated

Subset of Linear Temporal Logic (LTL):

17

Example 1: Sub-module Verification

18

Sub-property: Key Access Control

18

Example 2: Sub-module Verification

19

Sub-property: Atomicity + Controlled Invocation

SW Implementation
● Most of SW is due to HMAC
● Use verified HMAC (SHA2-256-based) implementation from HACL*
● HACL*: a cryptographic library written and verified using F*

○ Functional correctness (according to the primitive’s spec)
○ Memory Safety
○ Secret Independence

● Low* (subset of F*) can be automatically translated to C

20

J. Zinzindohoué, K. Bhargavan, J. Protzenko and B. Beurdouche
HACL*: A Verified Modern Cryptographic Library
ACM CCS 2017

What else can we do with VRASED?

&

What is RA actually good for?

21

RA alone is not enough!

22

What to do when malware is remotely detected on Prover?

• Physically re-flash Prover? Inconvenient…

• Remotely update Prover software?
* How to ensure that software is indeed updated and

starts correctly? Malware can always lie.

• Maybe reset Prover? Erase its memory?
* Same issues

Extending VRASED

• PoU: Proof of software update
• PoE: Proof of memory erasure
• PoR: Proof of system-wide reset

PURE: Architecture for Proofs of Update, Reset and Erasure

Main feature: proof of subsequent malware-free state on
Prover

23

Overview of PURE Approach

24

● For each security service:
○ State generic protocol definition
○ State security definition
○ Extend VRASED to obtain that service
○ Prove that construction is secure according to

security definition as long as VRASED is secure
■ Using reductions from VRASED security game

● Side-goal: Minimize mods to VRASED
● Start with PoR, then PoU, and PoE

PoR: Formal Definition

25

PoR: Security Definition

26

PoR: SW Implementation

27

● Extend VRASED SW to support PoR functionality
● New SW is called “TCB”
'

PoR code (PoR.C): Compute HMAC
on challenge and reset. Reset is
enforced by VRASED HW.

Unmodified VRASED SW

PoR: HW Implementation

28

● Add one new HW sub-module satisfying the following:

● Reads as: “After PoR code is invoked (when PC = fst(PoR.C)), PC does not
reach the last TCB instruction before a system reset is triggered.”

● Since VRASED triggers a reset whenever PC leaves the TCB from any
instruction other than lst(TCB)...

● ...it must reset or stay inside TCB forever.
● But, it cannot stay inside TCB forever since HMAC is proven to terminate
● Therefore, it must reset!

Verified HW sub-module

29

LTL Specification:

HW FSM:
Recall Controlled Invocation:
§ Normally VRASED only allows

exiting TCB from the last
instruction; otherwise reset!

§ This FSM will disallow that, if the
TCB call is for a PoR, i.e., if PC =
fst(PoR.C)

§ Closes the only exit door => the
only option is reset!

(1) Challenge

(5) Response: H(6) Verify response:
HMAC(K,Challenge||RST)=?= H

Verifier Prover

30

(2) Call PoR to compute :
H = HMAC(K,Challenge||RST)

(3) After (2), device must
reset before resuming normal
operation

(4) After rebooting, read H
from persistent storage and
send it back

NOTE: (4) can be done
by unprivileged
software. Why?

PoR: Construction (more formally)

31

PoR Proof

32

● Reduction from VRASED RA security to PoR security

● Intuition:
○ If there is an Adv that wins PoR-game without calling PoR

code, same Adv can be used to win VRASED RA-game.
○ Therefore, Adv must call PoR code.
○ However, PURE LTL specification enforces that whenever

PoR code is invoked, a system-wide reset must eventually
happen, before PoR result becomes accessible.

Proofs of Software Update

• Verifier wants to install new software (SW) on Prover:

1 - Verifier sends SW to Prover, along with memory region (MEM) where
to install it, and a challenge.

2 - Untrusted (non-RA) code is responsible for installing SW in MEM.

3 - Prover runs Attestation on MEM and replies with the result.

4 – If result is valid for MEM == SW, Verifier is assured that SW was
successfully installed in MEM on Prover.

33

(1) Challenge, SW,
MEM

(3) Response: H (3) Attest contents of MEM:
H = HMAC(K,Challenge||MEM)

(4) Verify response:
HMAC(K,Challenge||SW)=?= H

Verifier Prover

34

(2) Install SW on MEM
i.e., write MEM = SW
(memcpy)

Step (2) can be done by
untrusted software.

PoU: Formal Definition

35

PoU: Security Definition

36

PoU Construction & Verification

37

Construction:
● Use untrusted software to perform a software update
● Then call VRASED to compute a measurement on

updated software

Verification:
● No modification to VRASED HW/SW => no verification

effort for actual implementation
● Only need reduction from VRASED RA to PoU

PoU Construction (more formally)

38

Proofs of Memory Erasure

• Special case of PoU
• Can be viewed as an update to “all zeros”: {000...0}

• To erase a region n Prover’s memory:
1. Verifier sends erasure request to Prover along with the memory region

(MEM) to erase and a challenge.
2. Untrusted (non-RA) code writes “zeros” to MEM.
3. Prover runs Attestation on MEM and replies with the result
4. If Prover’s result is valid, i.e., H = HMAC(K,Challenge||000...0), Verifier knows

that MEM was successfully erased.

39

Proof of Memory Erasure (PoE)

40

Basically, PoE is a
special case of PoU
where S = {0}*.

PoE construction and
verification follow
those of PoU.

Implementation

● PURE was instantiated on Open Cores
OpenMSP430 Verilog Design

● Synthesized on Basys3 FPGA

41

See paper for details à https://github.com/sprout-uci/vrased

https://github.com/sprout-uci/vrased

Evaluation (vis-a-vis VRASED)

42

< 1% HW/SW
overhead

<2% Run-time
overhead

Serially Composing Proofs of
Update, Reset, and Erasure

• Composition:
1 - Proof of Update on Prover’s program memory to make sure that the
proper software was installed
2 - Proof of Erasure to make sure that nothing remains in data
memory (e.g., because malware could be hiding there)
3 – After (1) and (2), Proof of Reset to make sure that newly installed
software initializes correctly

• Altogether these proofs assure that Prover is moved to a valid,
malware-free (“PURE”) state.

• Or do they??? J
43

Conclusion

44

Secure RA

Sub-Property
2

Sub-Property
1

Sub-Property
3

HW HW SW

VRASED

Secure PoR Secure PoU Secure PoE

Reset
Property

HW

PURE

Next step

45

Proofs of Remote EXecution (PoX):

ü Cryptographically binds:
■ Instructions executed
■ Any output produced by this execution
■ Temporally consistent attestation of such instructions

ü Can be used to build sensors (actuators?) that “cannot lie”
even under full software compromise

ü Could yield a provably secure approach to the TOCTOU
problem in RA

Next step

46

Secure PoX
requires
(verification of)
several other
properties
and proving
secure
composition

Next step

47

And an architecture of its own (on top of RA):

The end

QUESTIONS?

48

Info & Pointers:

VRASED: A Verified Hardware/Software Co-Design for Remote Attestation
USENIX Security Symposium, 2019
Implementation, etc: https://github.com/sprout-uci/vrased

PURE: Using Verified Remote Attestation to Obtain Proofs of Update, Reset and Erasure in Low-End Embedded Systems
International Conference On Computer Aided Design (ICCAD), 2019.

A Verified Architecture for Proofs of Execution on Remote Devices under Full Software Compromise
Available at : https://arxiv.org/abs/1908.02444

Advancing remote attestation via computer-aided formal verification of designs and synthesis of executables
ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSEC), 2019.

https://github.com/sprout-uci/vrased
https://arxiv.org/abs/1908.02444

