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In this talk, I’m skipping:

• Talk Outline
• Background on IoT/CPS devices
• Detailed motivation for securing devices
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IoT (In)Security 



Low-end IoT/CPS Devices
(amoebas of the computing world)

● Designed for: Low Cost, Low Energy, Small Size, High Scale
● Memory: Program (≈32kB) and Data (≈2-16 kB)
● Single core CPU (8-16MHz; 8 or 16 bits)
● Simple Communication Interfaces for IO (a few kbps)
● Examples: TI MSP-430, AVR ATMega32 (Arduino)
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Attack/Compromise Detection vs. Prevention
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• Prevention is hard & expensive:
• Simple devices can not perform fancy crypto, run anti-malware, 

verify certificates, etc.

• Detection is the next best thing:
• Goal: Remotely measure internal state of device and detect 

anomalous/compromised states



Remote Attestation (RA)
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• A general approach for detecting malware presence on devices

• Two-party interaction between:
• Verifier: trusted entity
• Prover: potentially infected and untrusted remote IoT device

• Goal: measure current internal state of prover



(1) Challenge

(3) Response

(2) Authenticated 
memory measurement 
(via some integrity 
ensuring function)

(4) Verify 
response

Verifier Prover

(2) typically 
implemented as a MAC 
over prover’s memory
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Adversary might be in 
full control of Prover’s
software state

RA Interaction



Adversarial Model [DAC’15]

A. Remote malware adversary
• Exploits various vulnerabilities to inject malware from afar
• Exploits scale/popularity, probably not narrowly targeted

B. Local communication adversary
• Eavesdrops on, and manipulates, communication channel(s)
• Note: A can lead to B…

C. Physical adversary (up close and personal)
• Non-Invasive: mounts hardware side-channel attacks 
• Invasive: (1) read-only, (2) hw-modifying

8



RA Techniques
• Hardware-based 

• Effective, but…
• Dedicated hardware support (e.g., a TPM)
• Expensive & overkill for lower-end devices

• Software-based
• Relies on precise timing measurement and no real-time accomplices
• Unrealistic assumptions for remote prover except for peripheral/legacy devices

• Hybrid
• SW/HW co-design
• Minimal hardware impact
• Best fit for resource constrained IoT devices?
• Examples: SMART, TrustLite, TyTaN, SeED, HYDRA, ERASMUS, SMARM
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Why bother with formally verified RA?
• FV promises higher confidence and concrete security guarantees 

(towards provable security for concrete implementations)

• Current RA techniques do not offer concrete assurances and rigor stemming from FV 
to guarantee security of designs and their implementations

• Since existing techniques are not systematically designed from abstract models, 
soundness and security are hard to argue formally

• Subtle issues are easy to miss (indeed they have been!)

• Verification of hybrid (HW/SW) designs is both important and challenging
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Overview of
VRASED: 

A Formally Verified 
RA Architecture
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Verification Approach
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Secure RA

Sub-Property 
2

Sub-Property 
1

Sub-Property 
3

HW HW SW

1) Define end-to-end (general) 
secure RA property

2) Break it down into multiple 
sub-properties

3) Prove that sub-properties 
together imply end-to-end 
RA security

4) Implement VRASED HW/SW 
design

5) Prove that each HW/SW 
module satisfies each sub-
property

Based on (1-5), VRASED 
implementation satisfies 
secure RA propertyVRASED Implementation



Notation
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RA Security



Intuition behind sub-properties

Authenticated memory 
measurement requires a key è
If this key is leaked, the scheme is 
broken

Potential Malware
residing inside the
device should not
access the key

Safe Execution:
- Key not leaked during 

execution of trusted  code
- Malware cannot “escape” 

detection
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HW Implementation
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HW-Mod monitors a 
set of 7 CPU signals 
(wires) triggering a 

reset if any sub-
property is violated



Subset of Linear Temporal Logic (LTL):
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Example 1: Sub-module Verification

18

Sub-property:  Key Access Control
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Example 2: Sub-module Verification
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Sub-property: Atomicity + Controlled Invocation



SW Implementation
● Most of SW is due to HMAC
● Use verified HMAC (SHA2-256-based) implementation from HACL* 
● HACL*: a cryptographic library written and verified using F*

○ Functional correctness (according to the primitive’s spec)
○ Memory Safety
○ Secret Independence

● Low* (subset of F*) can be automatically translated to C
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J. Zinzindohoué, K. Bhargavan, J. Protzenko and B. Beurdouche
HACL*: A Verified Modern Cryptographic Library
ACM CCS 2017



What else can we do with VRASED?

&

What is RA actually good for?
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RA alone is not enough!
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What to do when malware is remotely detected on Prover?

• Physically re-flash Prover? Inconvenient…

• Remotely update Prover software?
*  How to ensure that software is indeed updated and 

starts correctly? Malware can always lie.

• Maybe reset Prover? Erase its memory? 
*  Same issues



Extending VRASED

• PoU: Proof of software update
• PoE: Proof of memory erasure
• PoR: Proof of system-wide reset

PURE: Architecture for Proofs of Update, Reset and Erasure  

Main feature: proof of subsequent malware-free state on 
Prover
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Overview of PURE Approach
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● For each security service:
○ State generic protocol definition
○ State security definition
○ Extend VRASED to obtain that service
○ Prove that construction is secure according to 

security definition as long as VRASED is secure
■ Using reductions from VRASED security game

● Side-goal: Minimize mods to VRASED 
● Start with PoR, then PoU, and PoE



PoR: Formal Definition
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PoR: Security Definition
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PoR: SW Implementation
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● Extend VRASED SW to support PoR functionality
● New SW is called “TCB”
'

PoR code (PoR.C): Compute HMAC 
on challenge and reset. Reset is 
enforced by VRASED HW.

Unmodified VRASED SW 



PoR: HW Implementation
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● Add one new HW sub-module satisfying the following:

● Reads as: “After PoR code is invoked (when PC = fst(PoR.C)), PC does not 
reach the last TCB instruction before a system reset is triggered.”

● Since VRASED triggers a reset whenever PC leaves the TCB from any 
instruction other than lst(TCB)...

● ...it must reset or stay inside TCB forever.
● But, it cannot stay inside TCB forever since HMAC is proven to terminate
● Therefore, it must reset!



Verified HW sub-module
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LTL Specification:

HW FSM:
Recall Controlled Invocation:
§ Normally VRASED only allows 

exiting TCB from the last 
instruction; otherwise reset!

§ This FSM will disallow that, if the 
TCB call is for a PoR, i.e., if PC = 
fst(PoR.C)

§ Closes the only exit door => the 
only option is reset!



(1) Challenge

(5) Response: H(6) Verify response:
HMAC(K,Challenge||RST)=?= H

Verifier Prover
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(2) Call PoR to compute :
H = HMAC(K,Challenge||RST)

(3) After (2), device must 
reset before resuming normal 
operation

(4) After rebooting, read H
from persistent storage and 
send it back

NOTE: (4) can be done 
by unprivileged 
software. Why?



PoR: Construction (more formally)
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PoR Proof
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● Reduction from VRASED RA security to PoR security

● Intuition:
○ If there is an Adv that wins PoR-game without calling  PoR

code, same Adv can be used to win VRASED RA-game.
○ Therefore, Adv must call PoR code.
○ However, PURE LTL specification enforces that whenever 

PoR code is invoked, a system-wide reset must eventually 
happen, before PoR result becomes accessible.



Proofs of Software Update

• Verifier wants to install new software (SW) on Prover:

1 - Verifier sends SW to Prover, along with memory region (MEM) where 
to install it, and a challenge.

2 - Untrusted (non-RA) code is responsible for installing SW in MEM.

3 - Prover runs Attestation on MEM and replies with the result.

4 – If result is valid for MEM == SW, Verifier is assured that SW was 
successfully installed in MEM on Prover.
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(1) Challenge, SW, 
MEM

(3) Response: H (3) Attest contents of MEM:
H = HMAC(K,Challenge||MEM)

(4) Verify response:
HMAC(K,Challenge||SW)=?= H

Verifier Prover

34

(2) Install SW on MEM
i.e., write MEM = SW 
(memcpy)

Step (2) can be done by 
untrusted software.



PoU: Formal Definition
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PoU: Security Definition
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PoU Construction & Verification

37

Construction:
● Use untrusted software to perform a software update 
● Then call VRASED to compute a measurement on 

updated software

Verification:
● No modification to VRASED HW/SW => no verification 

effort for actual implementation
● Only need reduction from VRASED RA to PoU



PoU Construction (more formally)
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Proofs of Memory Erasure

• Special case of PoU
• Can be viewed as an update to “all zeros”: {000...0}

• To erase a region n Prover’s memory:
1. Verifier sends erasure request to Prover along with the memory region 

(MEM) to erase and a challenge.
2. Untrusted (non-RA) code writes “zeros” to MEM.
3. Prover runs Attestation on MEM and replies with the result
4. If Prover’s result is valid, i.e., H = HMAC(K,Challenge||000...0), Verifier knows 

that MEM was successfully erased.
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Proof of Memory Erasure (PoE)
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Basically, PoE is a  
special case of PoU
where S = {0}*.

PoE construction and 
verification follow 
those of PoU.



Implementation

● PURE was instantiated on Open Cores 
OpenMSP430 Verilog Design

● Synthesized on Basys3 FPGA
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See paper for details à https://github.com/sprout-uci/vrased

https://github.com/sprout-uci/vrased


Evaluation (vis-a-vis VRASED)
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< 1% HW/SW 
overhead

<2% Run-time 
overhead



Serially Composing Proofs of 
Update, Reset, and Erasure

• Composition:
1 - Proof of Update on Prover’s program memory to make sure that the 
proper software was installed
2 - Proof of Erasure to make sure that nothing remains in data 
memory (e.g., because malware could be hiding there)
3 – After (1) and (2), Proof of Reset to make sure that newly installed 
software initializes correctly

• Altogether these proofs assure that Prover is moved to a valid, 
malware-free (“PURE”) state.

• Or do they??? J
43



Conclusion
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Secure RA

Sub-Property 
2

Sub-Property 
1

Sub-Property 
3

HW HW SW

VRASED 

Secure PoR Secure PoU Secure PoE

Reset 
Property

HW

PURE



Next step
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Proofs of Remote EXecution (PoX):

ü Cryptographically binds:
■ Instructions executed
■ Any output produced by this execution
■ Temporally consistent attestation of such instructions

ü Can be used to build sensors (actuators?) that “cannot lie” 
even under full software compromise 

ü Could yield a provably secure approach to the TOCTOU 
problem in RA



Next step
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Secure PoX
requires 
(verification of) 
several other 
properties
and proving 
secure 
composition



Next step
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And an architecture of its own (on top of RA):



The end

QUESTIONS?
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Info & Pointers: 

VRASED: A Verified Hardware/Software Co-Design for Remote Attestation
USENIX Security Symposium,  2019
Implementation, etc: https://github.com/sprout-uci/vrased

PURE: Using Verified Remote Attestation to Obtain Proofs of Update, Reset and Erasure in Low-End Embedded Systems 
International Conference On Computer Aided Design (ICCAD), 2019.

A Verified Architecture for Proofs of Execution on Remote Devices under Full Software Compromise
Available at : https://arxiv.org/abs/1908.02444

Advancing remote attestation via computer-aided formal verification of designs and synthesis of executables
ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSEC), 2019.

https://github.com/sprout-uci/vrased
https://arxiv.org/abs/1908.02444

