Obtaining Provably Secure
Services from Formally Verified Remote
Attestation

Gene Tsudik!

Joint work with: Ivan De Oliveira Nunes!, Karim Eldefrawy?, Norrathep Rattanavipanon!

University of California Irvine!, SRI International?

In this talk, I’m skipping:

« Talk Outline
 Background on IoT/CPS devices
 Detailed motivation for securing devices

IoT (In)Security

Webcam Maker Takes FTC's Heat
for Internet-of-Things Security

Failure Homeland Security warns of '‘BrickerBot'
) Richard Achikor malware that destroys unsecured internet-
P 5 O ST RAET connected devices

Reminiscent of the Mirai botnet that brought down large swathes of the US internet last year, this new malware

Vo Stuxnet worm heralds new era ofglobal Fomimms
cyberwar Hams > 5

FEATURE

attack aimed at ran muciearprameana 1 E Mirai botnet explained: How teen
atusbaseshow spread of cyberweapo gggmmers and CCTV cameras almost brought
down the internet

Mirai took advantage of insecure |oT devices in a simple but clever way. It scanned big blocks

of the internet for open Telnet ports, then attempted to log in default passwaords. In this way, it
was able to amass a botnet army.

Low-end IoT/CPS Devices

(amoebas of the computing world)

outside world

3

program memory data memory input and
(Aash ROM) (RAM) output ports
gzt;a tf L ’ T address
* bus
central processing | el i I
unit (CPU) - Eack |

Designed for: Low Cost, Low Energy, Small Size, High Scale
Memory: Program (=32kB) and Data (=2-16 kB)
Single core CPU (8-16MHz; 8 or 16 bits)

Simple Communication Interfaces for 10 (a few kbps)
Examples: TI MSP-430, AVR ATMega32 (Arduino)

T

Attack/Compromise Detection vs. Prevention

 Prevention is hard & expensive:
e Simple devices can not perform fancy crypto, run anti-malware,
verify certificates, etc.

e Detection is the next best thing:

* Goal: Remotely measure internal state of device and detect
anomalous/compromised states

T

Remote Attestation (RA)

* A general approach for detecting malware presence on devices
* Two-party interaction between:
» Verifier: trusted entity
* Prover: potentially infected and untrusted remote I0T device

* Goal: measure current internal state of prover

RA Interaction

Verifier Prover
- '\’g\\ Z‘ Adversary might be in
— full control of Prover’s

—
software state

(1) Challenge

() Authenticated
memory measurement
(3) Response (via some integrity
) ensuring function)

. () typically
(4) Verify implemented as a MAC

response over prover’s memory

Adversarial Model [DAC’15]

A. Remote malware adversary
 Exploits various vulnerabilities to inject malware from afar
* Exploits scale/popularity, probably not narrowly targeted

B. Local communication adversary
 Eavesdrops on, and manipulates, communication channel(s)
* Note: A can lead to B...

C. Physical adversary (up close and personal)
* Non-Invasive: mounts hardware side-channel attacks
* Invasive: (1) read-only, (2) hw-modifying

RA Techniques

 Hardware-based

e Effective, but...
* Dedicated hardware support (e.g., a TPM)
* Expensive & overkill for lower-end devices

* Software-based
* Relies on precise timing measurement and no real-timme accomplices
* Unrealistic assumptions for remote prover except for peripheral/legacy devices

* Hybrid
SW/HW co-design
Minimal hardware impact

Best fit for resource constrained IoT devices?
Examples: SMART, TrustLite, TyTaN, SeED, HYDRA, ERASMUS, SMARM

Why bother with formally verified RA?

* FV promises higher confidence and concrete security guarantees
(towards provable security for concrete implementations)

* Current RA techniques do not offer concrete assurances and rigor stemming from FV
to guarantee security of designs and their implementations

* Since existing techniques are not systematically designed from abstract models,
soundness and security are hard to argue formally

* Subtle issues are easy to miss (indeed they have been!)

» Verification of hybrid (HW/SW) designs is both important and challenging

Overview of
VRASED:
A Formally Verified
RA Architecture

Verification Approach

1) Define end-to-end (general)
secure RA property

2) Break it down into multiple
sub-properties

3) Prove that sub-properties
together imply end-to-end
RA security

4) Implement VRASED HW/SW
design

5) Prove that each HW/SW
module satisfies each sub-

Secure RA

a

Sub-Property
1 P2 3

Sub-Property Sub-Property 0O 0 O

S a a

e ™ property

HW HW 0 0 0 i Based on (1-5), VRASED
implementation satisfies
_ VRASED Implementation / secure RA property

Notation

Notation] Description —
PC Current Program Counter value (16-bits)
Ren Signal that indicates if the MCU is reading from memory (1-bit)
Wen Signal that indicates if the MCU is writing to memory (1-bit)
V1 SR . Address for an MCU memory access (16-bits)
DMA:érn Signal that indicates if DMA is currently enabled (1-bit)
DPMA 33 Memory address being accessed by DMA., if any (16-bits)
ER (Code ROM) Memory region where SW-Att is stored:
CR = [CRnin-CRmax]
KR (K ROM) Memory region where K is stored: KR = [Kmin-Kmax]
xS (eXclusive Stack) secure RAM region reserved for SW- At t computations:

MR (MAC RAM) RAM region in which SW- Att computation result is written:
MR = [MACagd4,.-MAC 444r + MACsize — 1]

reset A 1-bit signal that reboots the MCU when set to logic 1

RA Security

Definition 2.
2.1 RA Security Game (IRA-game):

Assumptions:
- Sw-Att is immutable, and K is not known to A
- I is the security parameter and |K| = |Chal| = | MR| =1

- AR(t) denotes the content in AR at time t

- A can modify AR and M R at will; however, it loses its ability to modify
them while Sw-Att is running

RA-game:
1) Setup: A can make poly(l) oracle calls to sw-Att, for arbitrary values
of AR and M R s Chal.
2) Challenge: at time t, A is presented with challenge Chal.
3) Response: A responds with a pair M ,o and wins if and only if M F#
AR(t) and o = HMAC(KDF(X,Chal), M).

2.2 RA Security Definition:

An RA protocol is considered secure if there is no ppt A capable of winning the
game defined in 2.1 with P, [A, RA-game] > negl(l)

Intuition behind sub-properties

Authenticated memory
measurement requires a key =

If this key is leaked, the scheme is
broken

Safe Execution:

- Key not leaked during
execution of trusted code

- Malware cannot “escape”

detection
Potential Malware
residing inside the 7 -
. -
device should not [Protect] Bvcon
access the key

Key Access
Control

Key
Confidentiality

Functional Controlled
Correctness Invocation

HW Implementation

A

—
MCU CORE . = HW-Mod
MEM. B
BACK-
) BONE KEY rst1 Atomicity & 1st2
AC — Controlled
PC Invocation
HW-Mod monitors a ire, o
set of 7 CPU signals o
(wires) triggering a e L
reset if any sub- DMAudar - F
property is violated
Exclusi DMA
;n:k“ ?GJ Support 1st4
HW-Mod
reset

Subset of Linear Temporal Logic (LTL):

e X¢ — neXt ¢: holds if ¢ is true at the next system state.

e F¢ — Future ¢: holds if there exists a future state where ¢ is
true.

e G¢ — Globally ¢: holds if for all future states ¢ is true.

e » Uy — ¢ Until ¢: holds if there is a future state where ¢
holds and ¢ holds for all states prior to that.

e) W iy — ¢ Weak Until ¢/: holds if ¢ holds for all states prior
to the state when ¢ holds. However, the state when 1/ holds
is not guaranteed to happen. In that case ¢ will remain true
forever.

T

Example 1: Sub-module Verification

Sub-property: Key Access Control

otherwise otherwise

G: {~(PC € CR) A Ren A (Duger € KR) - reset }

PC=1(
Run Reset

~(PC € CR) AR, A (Dyg4r € KR)

Example 2: Sub-module Verification

Sub-property: Atomicity + Controlled Invocation

G ‘ { PC < CRpin V PC > CRmax

-reset A (PC € CR) A—~(X(PC) € CR) —

PC =CRpys V X(reset) } | (PC < CRoin V PC > CRoax)
G: { e e)t) L

-reset A—~(PC € CR) A (X(PC) € CR) —
X(PC) = CRpin V X(reset) }

(PC > CRuiiis N PC. < CRyax)
A= irg

PC = CRyax N irg

(PC > CRpin A PC < CRppax)
A= irg

T

SW Implementation

® Most of SW is due to HMAC
e Use verified HMAC (SHAR-256-based) implementation from HACL*
e HACL*: a cryptographic library written and verified using F*
O Functional correctness (according to the primitive’s spec)
O Memory Safety
O Secret Independence
e Low* (subset of F*) can be automatically translated to C

J. Zinzindohoué, K. Bhargavan, J. Protzenko and B. Beurdouche
HACL*: A Verified Modern Cryptographic Library
ACM CCS 2017

T

What else can we do with VRASED?
&

What is RA actually good for?

T

RA alone is not enough!

What to do when malware is remotely detected on Prover?
 Physically re-flash Prover? Inconvenient...

 Remotely update Prover software?

* How to ensure that software is indeed updated and
starts correctly? Malware can always lie.

 Maybe reset Prover? Erase its memory?
* Same issues

T

Extending VRASED

 PoU: Proof of software update
 PoE: Proof of memory erasure
 PoR: Proof of system-wide reset

PURE: Architecture for Proofs of Update, Reset and Erasure

Main feature: proof of subsequent malware-free state on
Prover

T

Overview of PURE Approach

e For each security service:
o State generic protocol definition
o State security definition
o Extend VRASED to obtain that service
o Prove that construction is secure according to
security definition as long as VRASED is secure
m Using reductions from VRASED security game
e Side-goal: Minimize mods to VRASED
e Start with PoR, then PoU, and PoE

T

PoR: Formal Definition

DEFINITION 2 (SYNTAX). POR is a tuple (Request, Reset, Verify)

of algorithms:
e Request’V =% () algorithm initiated by “Vrf at time t to

request a proof that Prv has performed a reset at some point t’
in time, where it must hold that t’ > t. As a part of Request,

Vrf sends a challenge to Prv.
e Reset” ™=V (Chal) : algorithm executed by Prv to perform

a reset and use Chal to provide an unforgeable proof H that a

reset has happened.
e Verify V'™ (H, Chal) : algorithm executed by “V rf upon receiv-

ing H. It outputs 1 if H is a valid proof in response to Request.
Otherwise, it outputs 0.

T

PoR: Security Definition

DEFINITION 3.
3.1 POR Security Game (POR-game): Challenger plays the following
game with Adv:
(1) Adv is given full control over Prv software state and oracle
access to Reset calls.
(2) At time t, Adv is presented with Chal.

(3) Adv wins iff, after t, Adv can produce H 44, , such that Verify
(HAadv. Chal) = 1, without causing Prv to reset.

3.2 POR Security Definition:
A POR scheme is considered secure if for all PPT adversaries Adv, there
exists a negligible function negl such that:

Pr| Adv, POR-game] < negl(l)

PoR: SW Implementation

e Extend VRASED SW to support PoR functionality
e New SW is called “TCB”

1 void Hacl HMAC_SHA2_ 256_hmac-entry(uint8-t operation) {
2 uint8_t key[64] = {0};
2 memcpy (key, (uint8 t=) KEY_ADDR, 64); PoR code (PoR.C): Compute HMAC
if (operation == RESET i
5 il et~ — "~ —————————- N / catereeaty VRASED HW.
6 | hacl_hmac((uint8_t*) RST_RESULT_ADDR, (uint8_t*) key, (uint32_t) 64,|
| (uint8_t+*) CHALL_ADDR, (uint32_t) 32);
7 | return; |
8 \ // lst(PoR.C) instruction. ’)
9 }e_lsZ{:::::::::::::::::::::::::::::::\
10 //Unmodified VRASED code for regular attestation |
11 | hacl_hmac((uint8_t+) key, (uint8_t=+) key, (uint32_t) 64, (uint8_t=*) |
| CHALL_ADDR, (uint32_t) 32); | .
12 | haclhmac((uint8_ts) MAC_ADDR, (uint8_ts) key, (uint32.t) 32, (|<— vnmodified VRASED SW
N uint8_t*) ATTEST_-DATA_ADDR, (uint32_t) ATTEST-SIZE); /<<%
13 y - T
14 return();
15 1}

N
ﬂ

PoR: HW Implementation

e Add one new HW sub-module satisfying the following:

G:{[PC = fst(PoR.C) AE(PC = Is(TCB))| = [~(PC = [st(TCB)) U reset|}
e Reads as: “After PoR code is invoked (when PC = fst(PoR.C)), PC does not
reach the last TCB instruction before a system reset is triggered.”
e Since VRASED triggers a reset whenever PC leaves the TCB from any
instruction other than 1st(TCB)...
e ..it must reset or stay inside TCB forever.
e But, it cannot stay inside TCB forever since HMAC is proven to terminate

e Therefore, it must reset!

T

Verified HW sub-module

LTL Specification: G:{[PC = fst(PoR.C) A F(PC = Ist(TCB))] = [~(PC = Ist(TCB)) U reset]}

Recall Controlled Invocation:

" Normally VRASED only allows
exiting TCB from the last
instruction; otherwise reset!

= This FSM will disallow that, if the

I W = W TCB call is for a PoR, i.e., if PC =
fst(PoR.C)

" (Closes the only exit door => the
only option is reset!

HW FSM:

PC = fst(PoR.C)

Verifier Prover

] —

_—a=——

NOTE: (4) can be done
by unprivileged
software. Why? -

(1) Challenge R (2) Call PoR to compute :
H = HMAC (K,Challenge| |RST)

(3) After (2), device must
reset before resuming normal
operation

(4) After rebooting, read H

(6) Verify response: o < (5) Response: H from persistent storage and
HMAC (K, Challenge| |RST)=?= H send it back

PoR: Construction (more formally)

CONSTRUCTION 1 (FPURE POR). Suppose PoR.C is the program memn-
ory region inside the TCB storing POR software binary: PoR.C € TCB.
Construction of PURE POR is defined as follows:
e RequestV"™ %™ (). Vif generates a random challenge
Chal «— ${0, 1} and sends it to Prv.
e Reset”’vV>Vrf (Chal):
(1) Use VRASED’s HMAC to compute HMAC (K, Chal),
and write the result at RST RESULT ADDR, where
RST RESULT ADDR is in a persistent storage (flash)
memory region.
(2) Enforce the following LIL invariant:

G :{PC = fst(PoR.C) » [(PC € TCBAN—-DMAen) W reset]} (1)

e Verify V' (H, Chal): Vrf returns 1 if and only if H =
HMAC(IK, Chal).

PoR Proof

e Reduction from VRASED RA security to PoR security

e Intuition:
o Ifthere is an Adv that wins PoR-game without calling PoR
code, same Adv can be used to win VRASED RA-game.
o Therefore, Adv must call PoR code.
o However, PURE LTL specification enforces that whenever
PoR code is invoked, a system-wide reset must eventually
happen, before PoR result becomes accessible.

T

Proofs of Software Update

* Verifier wants to install new software (SW) on Prover:

1 - Verifier sends SW to Prover, along with memory region (MEM) where
to install it, and a challenge.

& - Untrusted (non-RA) code is responsible for installing SW in MEM.
3 - Prover runs Attestation on MEM and replies with the result.

4 - If result is valid for MEM == SW, Verifier is assured that SW was
successfully installed in MEM on Prover.

Step (2) can be done by -
untrusted software.

(1) Challenge, SW, § (2) Install SW on MEM

>
MEM i.e., write MEM = SW

(memcpy)

< (8) Response: i (3) Attest contents of MEM:

H = HMAC (K,Challenge| |MEM)

(4) Verify response:

HMAC (K, Challenge| | SW)=?= H

PoU: Formal Definition

DEFINITION 4 (SsYNTAX). A PoU scheme consists of a tuple
(Request, Install, Verify) fulfilling the following:

e RequestV" ™ (8): algorithm initiated by “Vrf to request
software S to be installed on Prv at a memory range U R, where
I UR| = |S|. Prv also receives a challenge Chal as a part of
the request.

e Install” ™~V (Chal, S): algorithm executed by Prv to up-
date software such that UR = §. Upon successful update, it
outputs a proof H that the update has completed.

B Verify(vrf (H, Chal, 8): algorithm executed by Vrf upon re-
ceiving H. It outputs 1 if H is a valid proof in response to
Request. Otherwise, it outputs 0.

PoU: Security Definition

DEFINITION 5.

5.1 PoU Security Game (PoU-game):

Notation:

- UR is the memory region on Prv that should be updated, and U R(t)
denotes the content of U R at time t.

Challenger plays the following game with Adv:
(1) Adv is given full control over Prv software state and oracle
access to Install.
(2) Adv is presented with Chal and S, and continues to have oracle
access to Install.
(3) Eventually at time t, Adv queries Install and outputs H.
(4) Adv wins if and only if Verify(H, Chal, &) = 1 and UR(t) #
S.
5.2 PoU Security Definition:
A PoU scheme is secure if, for all Probabilistic Polynomial-Time (PPT)
adversaries Adv, there exists a negligible function negl such that:

Pr|Adv, PoU-game] < negl(l)

PoU Construction & Verification

Construction:

e Use untrusted software to perform a software update

e Then call VRASED to compute a measurement on
updated software

Verification:

e No modification to VRASED HW/SW => no verification
effort for actual implementation

e Only need reduction from VRASED RA to PoU

T

PoU Construction (more formally)

ConsTrucTION 2 (PURE POU). Since Prv has a VRASED-compliant
architecture, where memory range AR = U R, the construction is defined
as follows:

e Request V" P (. S): Vrf outputs S and a random challenge

Chal «— ${0, 1}! to Prv.

e Install” V=V (Chal, S): Prv performs three steps:

(1) Unprivileged software receives S and Chal and writes them
into UR and MR, respectively.

(2) Call VRASED SW-ATtTt’s remote attestation function to com-
pute H = HMAC(KDF (XK, Chal), AR) =
HMAC(KDF(/K, Chal), UR) and write H into MR.

(3) Control returns to unprivileged software which is responsible
for sending the content of MR to “V'rf.

» Verify(vrf(H, Chal, 8): Vrf returns 1 if and only if H =

HMAC(KDF(/K, Chal), 8§).

Proofs of Memory Erasure

* Special case of PoU
e Can be viewed as an update to “all zeros”: {000...0}

 To erase a region n Prover’s memory:
1. Verifier sends erasure request to Prover along with the memory region
(MEM) to erase and a challenge.
. Untrusted (non-RA) code writes “zeros” to MEM.
3. Prover runs Attestation on MEM and replies with the result
4. If Prover’s result is valid, i.e., H = HMAC (K,Challenge] |000...0), Verifier knows
that MEM wass successfully erased.

Proof of Memory Erasure (PoE)

DEFINITION 4 (SYNTAX). A PoU scheme consists of a tuple
(Request, Install, Verify) fulfilling the following: Basically, PoE is a

e Request” """ (S): algorithm initiated by Vrf to request special case of PoU
software S to be installed on Prv at a memory range U R, where where S = {0}*.
\UR| = |S|. Prv also receives a challenge Chal as a part of
the request.

e Install”™ V™ (Chal, S): algorithm executed by Prv to up-
date software such that UR = S. Upon successful update, it
outputs a proof H that the update has completed.

i Verify(V'f(H, Chal, 8): algorithm executed by Vrf upon re-
ceiving H. It outputs 1 if H is a valid proof in response to
Request. Otherwise, it outputs 0.

PoE construction and
verification follow
those of PoU.

Implementation

® PURE was instantiated on Open Cores
OpenMSP430 Verilog Design

We™
.

,,,,,,.B

® Synthesized on Basys3 FPGA : mex

;
SEERR.

I"l’ 5d

:';.,‘ "O 0“ 0'

See paper for details = https://github.com/sprout-uci/vrased

https://github.com/sprout-uci/vrased

Evaluation (vis-a-vis VRASED)

PRE— T e
Size Code Size Mem. Usage LUT Reg

OpenMSP430 [35] - - - 1842 684
VRASED [9] 4500 112 2332 1964 721
PURE 4550 138 2336 1968 724

Table 2: PURE (additional) hardware and software cost

o—& Proof of Update | .

o—e Proof of Erasure

- - Attestation -
Proof of Reset |+ N TR R WP =il N . B

..

..

Memory Size (in KB)

< 1% HW/SW
overhead

<2% Run-time
overhead

Serially Composing Proofs of
Update, Reset, and Erasure

 Composition:
1 - Proof of Update on Prover’s program memory to make sure that the
proper software was installed
& - Proof of Erasure to make sure that nothing remains in data
memory (e.g., because malware could be hiding there)
3 - After (1) and (2), Proof of Reset to make sure that newly installed
software initializes correctly

« Altogether these proofs assure that Prover is moved to a valid,

malware-free (“PURE”) state.

* Or do they?%? ©

Conclusion

Secure RA Secure PoR Secure PoU Secure PoE
Sub-Property Sub-Property Sub-Property Reset
O O
1 2 3 Property
HW HW O O SW HW
VRASED/ PURE

Next step

Proofs of Remote EXecution (PoX):

v' Cryptographically binds:
m Instructions executed
m Any output produced by this execution
m Temporally consistent attestation of such instructions
v' Can be used to build sensors (actuators?) that “cannot lie”
even under full software compromise
v' Could yield a provably secure approach to the TOCTOU
problem in RA

T

Next step

Definition 7. Necessary Sub-Properties for Secure Proofs of Execution in LTL.

Ephemeral Immutability:

G: {{Wen A (Daddr € ER)]V [DMAcn A (DM Agaar € ER)] - ~EXEC} 3)

S ecure POX Ephemeral Atomicity:
Pequ:lres G: {(PC € ER) A—~(X(PC) € ER) - PC = ERyax V -X(EXEC) } 4)

(Ver‘]_flca,t,]_on Of) G: {~(PC € ER) A (X(PC) € ER) - X(PC) = ERmin V -X(EXEC)})
Severa,]_ OtheP Output Protection:

properties G: {[-(PC € ER) A (Wen A Dggar € OR)|V (DMAcn A DMA, 44, € OR)V (PC € ERADMA.,) > -EXEC} 7
Executable/Output (ER/OR) Boundaries & Challenge Temporal Consistency:

a’nd pPOVlng G: {ERvnin > ERma;x: A\ ORnAin > ORvnu:x: - _'EXEC} (8)

secure G: {ERmin < CRmaz V ERmaz > CRimax — ~EXEC} ©)
G: {[Wen A (Daddr € METADATA)]V [DMAcn A (DM Aqaa, € METADATA)] - ~EX EC} (10)

composition Remark: Note that Chalymarm € METADATA

Response Protection:

G: {(PC € ER) Airq - ~EXEC} (6)

G: {~EXECAX(EXEC) — X(PC = ERmin)} (1D

G: {reset » -EXEC} (12)

Next step

And an architecture of its own (on top of RA):

MCU'’s Address Space

ER

OR

MCU CORE
[
]”C.
n‘q.
Ren, HW-Mod
Didars
DMA,
DMA, hruet |
VRASED

VAPE

Region 1

META |

DATA

ER 1

OR

State So State S; State S; H ready

EER executiod' :Attes tiodl

OO Y e memer

W [cofonced by VRASEL

‘ enforced by VRASED
trlc., t(ER',,,.-,,) t(ERI,,,“) t(Cﬂ:mm) t(Cle.,,)tuc'n‘/ Ti:me

The end

Info & Pointers:

VRASED: A Verified Hardware/Software Co-Design for Remote Attestation
USENIX Security Symposium, 2019
Implementation, etc: https://github.com/sprout-uci/vrased

PURE: Using Verified Remote Attestation to Obtain Proofs of Update, Reset and Erasure in Low-End Embedded Systems
International Conference On Computer Aided Design (ICCAD), 2019.

A Verified Architecture for Proofs of Execution on Remote Devices under Full Software Compromise
Available at : https://arxiv.org/abs/1908.02444

Advancing remote attestation via computer-aided formal verification of designs and synthesis of executables
ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSEC), 2019.

QUESTIONS?

https://github.com/sprout-uci/vrased
https://arxiv.org/abs/1908.02444

