Stjepan Picek stjepan@computer.org

CROSSING Summer School on Sustainable Security & Privacy, Darmstadt, September 12, 2019

Outline

1 Introduction

- 2 Machine Learning for Implementation Attacks
- 3 Deep Learning and SCA

4 Conclusions

- Introduction

Outline

- 2 Machine Learning for Implementation Attacks
- 3 Deep Learning and SCA

4 Conclusions

-Introduction

Where to use Machine Learning in Cryptology

- Machine learning is data driven approach.
- It seems more difficult to use such techniques for design.
- Additional benefit from using them in attacks: it is easy to validate the solution.

- Introduction

Where to use Machine Learning - Classical Applications

- Side-channel attacks.
- Fault injection.
- Modeling attacks on PUFs.
- Detecting Hardware Trojans.
- Machine learning over encrypted data.

- Introduction

Where to use Machine Learning - Exotic Applications

- Factoring numbers.
- Design of ciphers.

Outline

2 Machine Learning for Implementation Attacks

3 Deep Learning and SCA

4 Conclusions

Implementation Attacks and SCA

Implementation attacks

Implementation attacks do not aim at the weaknesses of the algorithm, but on its implementation.

- Side-channel attacks (SCAs) passive, non-invasive attacks.
- SCAs one of the most powerful category of attacks on crypto devices.
- Profiled attacks the most powerful among SCAs.
- Within profiling phase the adversary estimates leakage models for targeted intermediate computations, which are exploited to extract secret information in the actual attack phase.

Profiled Attacks

SCA and Profiling Attacks

Table: Overview of profiling side-channel attacks used in literature (up to March 2019 and limited to symmetric key crypto).

Algorithm	Reference
Naive Bayes and its variants	[1, 2, 3, 4, 5, 6]
Random Forest	[2, 3, 4, 7, 8, 6, 9, 10, 11, 12, 13, 14]
Rotation Forest	[15, 4, 5, 16]
XGB	[5]
MultiBoost	[15]
Self-organizing maps	[9]
Support Vector Machines	[15, 4, 7, 8, 6, 17, 18, 9, 10, 11, 12, 19, 13, 20, 16]
Multivariate regression analysis	[21, 11, 12]
Multilayer Perceptron	[2, 3, 5, 7, 8, 6, 22, 23, 24, 25, 26, 27, 28]
Convolutional Neural Networks	[8, 5, 7, 29, 30, 22, 28]
Autoencoders	[8]
Recurrent Neural Networks	[8]
Template Attack and its variants	[1, 15, 4, 7, 8, 29, 30, 6, 17, 9, 10, 11, 12, 19,
	13, 28, 16]
Stochastic attack	[11, 12, 7]

Profiled Attacks

- Template Attack is the most powerful attack from the information theoretic point of view.
- Some machine learning techniques (supervised learning) also belong to the profiled attacks.
- Deep learning has been shown to be able to reach top performance even if the device is protected with countermeasures.

Outline

1 Introduction

2 Machine Learning for Implementation Attacks

3 Deep Learning and SCA

4 Conclusions

Deep Learning

Let us build a neural network.

Deep Learning

• Let us continue adding neurons.

Multilayer Perceptron - "Many" Hidden Layers

Deep Learning and SCA

Multilayer Perceptron - One Hidden Layer

Universal Approximation Theorem

- A feed-forward network with a single hidden layer containing a finite number of neurons can approximate continuous functions on compact subsets of Rⁿ.
- Given enough hidden units and enough data, multilayer perceptrons can approximate virtually any function to any desired accuracy.
- Valid results if and only if there is a sufficiently large number of training data in the series.

Convolutional Neural Networks

- CNNs represent a type of neural networks which were first designed for 2-dimensional convolutions.
- They are primarily used for image classification but lately, they have proven to be powerful classifiers in other domains.
- From the operational perspective, CNNs are similar to ordinary neural networks: they consist of a number of layers where each layer is made up of neurons.
- CNNs use three main types of layers: convolutional layers, pooling layers, and fully-connected layers.

Convolutional Neural Networks - Convolution Layer

Convolutional Neural Networks - Pooling

State-of-the-art

Design Principle - VGG Like CNN

$$net = fc_{\theta, \text{softmax}} \circ \prod_{p=1}^{P} fc_{\theta^{p}, \text{ReLU}} \circ \prod_{q=1}^{Q} (\text{pool}_{\text{Max}} \circ \prod_{r=1}^{R_{q}} \text{conv}_{\phi^{r}, \text{ReLU}}),$$
(1)

$$\operatorname{conv}_{\phi,\sigma}(X) = \sigma(\phi * X),$$
 (2)

$$fc_{\theta,\sigma}(x) = \sigma(\theta^{\intercal}x).$$
 (3)

State-of-the-art

Common Architectures

VGG, 19 layers	
(ILSVRC 2014)	

•
3x3 conv, 64, pool/2
*
3x3 conv, 128
*
3x3 conv, 128, pool/2
*
3x3 conv, 256
*
3x3 conv, 256
*
3x3 conv, 256
*
3x3 conv, 256, pool/2
*
3x3 conv, 512
*
3x3 conv, 512
*
3x3 conv, 512
3x3 conv, 512, pool/2
3x3 conv, 512
*
3x3 conv, 512
3x3 conv, 512
*
3x3 conv, 512, pool/2
*
fc, 4096
*
fc, 4096
*

3x3 conv, 64

GoogleNet, 22 layers (ILSVRC 2014)

---. يفري بغ بغ ėėė ¥ - 64 -----مثمر عثم جثم جثم séès in in in ÷. -10 10 10 10 10 100 100 100 ¥ 10 E10 E10 E10 1

2

State-of-the-art

More Complex Architectures

State-of-the-art

Convolutional Neural Network in SCA

└─ State-of-the-art

Making the Architectures Even More Powerful

- To reduce the overfitting of the model, we introduce noise to the training phase.
- Since in our case, the input normalization is also learned during the training process via the BN layer, we added the noise tensor after the first BN.

$$X^* = BN_0(X) + \Psi, \quad \Psi \sim \mathcal{N}(0, \alpha). \tag{4}$$

• The noise tensor follows the normal distribution.

Deep Learning and SCA

State-of-the-art

AES

Deep Learning and SCA

State-of-the-art

Datasets

(c) Random Delay dataset

(d) ASCAD dataset

Deep Learning and SCA

State-of-the-art

Results DPAv4

Deep Learning and SCA

State-of-the-art

Results AES_HD

Deep Learning and SCA

State-of-the-art

Results AES_RD

Deep Learning and SCA

State-of-the-art

Results ASCAD

Portability

Profiling Attacks and Portability

- There are two devices: one for training and the second one for attack.
- Two devices, different keys.
- Usually, we make our lives simpler and assume only one device and the same key.
- It is the same?

Deep Learning and SCA

Portability

Setup

Deep Learning and SCA

Portability

NICV

Deep Learning and SCA

Portability

Same Key and Device

Portability

Different key and Same Device

Deep Learning and SCA

Portability

Same Key and Different Device

Portability

Different key and Device

Deep Learning and SCA

Portability

Validation

Deep Learning and SCA

Portability

Multiple Device Model

- Instead of validating on the same device as training, we need one more device!
- Separate devices for train, validation, attack.
- If we do not have a third device, we can use artificial noise.

Deep Learning and SCA

Portability

Multiple Device Model

Portability

Problems and "Problems"

- Selection of machine learning techniques and hyper-parameter tuning.
- Portability.
- Lack of datasets.
- Reproducibility and explainability.
- Still no clear connection between machine learning and side-channel analysis metrics.
- Countermeasures.
- Academia vs. industry perspective.

• • • •

Deep Learning and SCA

Machine Learning for Fault Injection

Introduction

- A fault injection (FI) attack is successful if after exposing the device to a specially crafted external interference, it shows an unexpected behavior exploitable by the attacker.
- Insertion of signals has to be precisely tuned for the fault injection to succeed.
- Finding the correct parameters for a successful FI can be considered as a search problem.
- The search space is typically too large to perform an exhaustive search.

Machine Learning for Fault Injection

Verdict classes

- FI testing equipment can output only verdict classes that correspond to successful measurements.
- Several possible classes for classifying a single measurement:
 - NORMAL: smart card behaves as expected and the glitch is ignored
 - 2 RESET: smart card resets as a result of the glitch
 - 3 MUTE: smart card stops all communication as a result of the glitch
 - 4 INCONCLUSIVE: smart card responds in a way that cannot be classified in any other class
 - **5** SUCCESS: smart card response is a specific, predetermined value that does not happen under normal operation

Deep Learning and SCA

Machine Learning for Fault Injection

Approaches

- Random search and exhaustive search.
- For voltage glitching and EMFI, we can use various heuristics, like genetic algorithms.
- Approaches as exhaustive search cannot work: would last 29 000 years.
- For laser FI, the situation is more complex as laser can easily break the target so we use deep learning.

Deep Learning and SCA

Machine Learning for Fault Injection

EMFI and Keccak

(i) Random search

(j) GA and local search

Deep Learning and SCA

Machine Learning for Fault Injection

LFI and DES

Deep Learning and SCA

Machine Learning for Fault Injection

LFI and AES

Outline

1 Introduction

- 2 Machine Learning for Implementation Attacks
- 3 Deep Learning and SCA

4 Conclusions

Conclusions

- Machine learning (and even wider, artificial intelligence) play important role in cryptography.
- Currently, attacks perspective seem to be more developed.
- In implementation attacks, machine learning represents even the most powerful option.
- Still, our state-of-the-art techniques are usually much simpler than in other domains.
- There are some specific parts one does not encounter in other domains, but much of the knowledge is transferable.
- What do new attacks teach us about improving the countermeasures?

Questions?

Thanks for your attention! Q?

Picek, S., Heuser, A., Guilley, S.:

Template attack versus Bayes classifier. Journal of Cryptographic Engineering 7(4) (Nov 2017) 343–351

Heuser, A., Picek, S., Guilley, S., Mentens, N.:

Side-channel analysis of lightweight ciphers: Does lightweight equal easy? In: Radio Frequency Identification and IoT Security - 12th International Workshop, RFIDSec 2016, Hong Kong, China, November 30 - December 2, 2016, Revised Selected Papers. (2016) 91–104

Heuser, A., Picek, S., Guilley, S., Mentens, N.: Lightweight ciphers and their side-channel resilience.

IEEE Transactions on Computers PP(99) (2017) 1-1

Picek, S., Heuser, A., Jovic, A., Legay, A.:

Climbing down the hierarchy: Hierarchical classification for machine learning side-channel attacks. In Joye, M., Nitaj, A., eds.: Progress in Cryptology - AFRICACRYPT 2017: 9th International Conference on Cryptology in Africa, Dakar, Senegal, May 24-26, 2017, Proceedings, Cham, Springer International Publishing (2017) 61–78

Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.:

On the performance of convolutional neural networks for side-channel analysis. In Chattopadhyay, A., Rebeiro, C., Yarom, Y., eds.: Security, Privacy, and Applied Cryptography Engineering, Cham, Springer International Publishing (2018) 157–176

Picek, S., Heuser, A., Alippi, C., Regazzoni, F.:

When theory meets practice: A framework for robust profiled side-channel analysis. Cryptology ePrint Archive, Report 2018/1123 (2018) https://eprint.iacr.org/2018/1123.

Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.:

The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1) (2019) 209–237

Maghrebi, H., Portigliatti, T., Prouff, E.:

Breaking cryptographic implementations using deep learning techniques. In: Security, Privacy, and Applied Cryptography Engineering - 6th International Conference, SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings. (2016) 3–26

Lerman, L., Bontempi, G., Markowitch, O.:

Power analysis attack: An approach based on machine learning. Int. J. Appl. Cryptol. 3(2) (June 2014) 97–115

Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.:

Template Attacks vs. Machine Learning Revisited (and the Curse of Dimensionality in Side-Channel Analysis).

In: COSADE 2015, Berlin, Germany, 2015. Revised Selected Papers. (2015) 20-33

Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.:

A Machine Learning Approach Against a Masked AES.

In: CARDIS. Lecture Notes in Computer Science, Springer (November 2013) Berlin, Germany.

Lerman, L., Bontempi, G., Markowitch, O.:

A machine learning approach against a masked AES - Reaching the limit of side-channel attacks with a learning model.

J. Cryptographic Engineering 5(2) (2015) 123-139

Lerman, L., Bontempi, G., Ben Taieb, S., Markowitch, O.:

A time series approach for profiling attack.

In Gierlichs, B., Guilley, S., Mukhopadhyay, D., eds.: Security, Privacy, and Applied Cryptography Engineering, Berlin, Heidelberg, Springer Berlin Heidelberg (2013) 75–94

Najm, Z., Jap, D., Jungk, B., Picek, S., Bhasin, S.:

On comparing side-channel properties of AES and chacha20 on microcontrollers.

In: 2018 IEEE Asia Pacific Conference on Circuits and Systems, APCCAS 2018, Chengdu, China, October 26-30, 2018, IEEE (2018) 552–555

Picek, S., Heuser, A., Jovic, A., Ludwig, S.A., Guilley, S., Jakobovic, D., Mentens, N.:

Side-channel analysis and machine learning: A practical perspective. In: 2017 International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017. (2017) 4095–4102

Lerman, L., Medeiros, S.F., Veshchikov, N., Meuter, C., Bontempi, G., Markowitch, O.:

Semi-supervised template attack.

In Prouff, E., ed.: Constructive Side-Channel Analysis and Secure Design, Berlin, Heidelberg, Springer Berlin Heidelberg (2013) 184–199

Heuser, A., Zohner, M.:

Intelligent Machine Homicide - Breaking Cryptographic Devices Using Support Vector Machines. In Schindler, W., Huss, S.A., eds.: COSADE. Volume 7275 of LNCS., Springer (2012) 249–264

Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Machine learning in side-channel analysis: a first study. Journal of Cryptographic Engineering 1 (2011) 293–302 10.1007/s13389-011-0023-x.

Bartkewitz, T., Lemke-Rust, K.:

Efficient template attacks based on probabilistic multi-class support vector machines. In Mangard, S., ed.: Smart Card Research and Advanced Applications, Berlin, Heidelberg, Springer Berlin Heidelberg (2013) 263–276

Hospodar, G., De Mulder, E., Gierlichs, B.:

Least squares support vector machines for side-channel analysis. Center for Advanced Security Research Darmstadt (01 2011) 99–104

Sugawara, T., Homma, N., Aoki, T., Satoh, A.:

- Conclusions

```
\begin{array}{l} \mbox{Profiling attack using multivariate regression analysis.} \\ \mbox{IEICE Electron. Express 7(15) (2010) 1139-1144} \end{array}
```


Timon, B.:

Non-profiled deep learning-based side-channel attacks. Cryptology ePrint Archive, Report 2018/196 (2018) https://eprint.iacr.org/2018/196.

Pfeifer, C., Haddad, P.:

Spread: a new layer for profiled deep-learning side-channel attacks. Cryptology ePrint Archive, Report 2018/880 (2018) https://eprint.iacr.org/2018/880.

Gilmore, R., Hanley, N., O'Neill, M.:

Neural network based attack on a masked implementation of AES. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). (May 2015) 106–111

Martinasek, Z., Hajny, J., Malina, L.:

Optimization of power analysis using neural network. In Francillon, A., Rohatgi, P., eds.: Smart Card Research and Advanced Applications, Cham, Springer International Publishing (2014) 94–107

Yang, S., Zhou, Y., Liu, J., Chen, D.:

Back propagation neural network based leakage characterization for practical security analysis of cryptographic implementations.

In Kim, H., ed.: Information Security and Cryptology - ICISC 2011, Berlin, Heidelberg, Springer Berlin Heidelberg (2012) 169–185

Martinasek, Z., Zeman, V.:

Innovative method of the power analysis. Radioengineering **22**(2) (2013)

Hettwer, B., Gehrer, S., Güneysu, T.:

Profiled power analysis attacks using convolutional neural networks with domain knowledge. In Cid, C., Jr., M.J.J., eds.: Selected Areas in Cryptography - SAC 2018 - 25th International Conference, Calgary, AB, Canada, August 15-17, 2018, Revised Selected Papers. Volume 11349 of Lecture Notes in Computer Science., Springer (2018) 479–498

Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.:

Make some noise: Unleashing the power of convolutional neural networks for profiled side-channel analysis. Cryptology ePrint Archive, Report 2018/1023 (2018) https://eprint.iacr.org/2018/1023.

Cagli, E., Dumas, C., Prouff, E .:

Convolutional Neural Networks with Data Augmentation Against Jitter-Based Countermeasures - Profiling Attacks Without Pre-processing.

In: Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings. (2017) 45-68