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Introduction

Where to use Machine Learning in Cryptology

Machine learning is data driven approach.

It seems more difficult to use such techniques for design.

Additional benefit from using them in attacks: it is easy to
validate the solution.

4 / 51



Machine Learning and Implementation Attacks

Introduction

Where to use Machine Learning - Classical Applications

Side-channel attacks.

Fault injection.

Modeling attacks on PUFs.

Detecting Hardware Trojans.

Machine learning over encrypted data.
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Introduction

Where to use Machine Learning - Exotic Applications

Factoring numbers.

Design of ciphers.
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Machine Learning for Implementation Attacks

Implementation Attacks and SCA

Implementation attacks

Implementation attacks do not aim at the weaknesses of the
algorithm, but on its implementation.

Side-channel attacks (SCAs) – passive, non-invasive attacks.

SCAs – one of the most powerful category of attacks on
crypto devices.

Profiled attacks – the most powerful among SCAs.

Within profiling phase the adversary estimates leakage models
for targeted intermediate computations, which are exploited to
extract secret information in the actual attack phase.
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Profiled Attacks

9 / 51



Machine Learning and Implementation Attacks

Machine Learning for Implementation Attacks

SCA and Profiling Attacks

Table: Overview of profiling side-channel attacks used in literature (up to March 2019
and limited to symmetric key crypto).

Algorithm Reference

Naive Bayes and its variants [1, 2, 3, 4, 5, 6]
Random Forest [2, 3, 4, 7, 8, 6, 9, 10, 11, 12, 13, 14]
Rotation Forest [15, 4, 5, 16]
XGB [5]
MultiBoost [15]
Self-organizing maps [9]
Support Vector Machines [15, 4, 7, 8, 6, 17, 18, 9, 10, 11, 12, 19, 13, 20, 16]
Multivariate regression analysis [21, 11, 12]
Multilayer Perceptron [2, 3, 5, 7, 8, 6, 22, 23, 24, 25, 26, 27, 28]
Convolutional Neural Networks [8, 5, 7, 29, 30, 22, 28]
Autoencoders [8]
Recurrent Neural Networks [8]
Template Attack and its variants [1, 15, 4, 7, 8, 29, 30, 6, 17, 9, 10, 11, 12, 19,

13, 28, 16]
Stochastic attack [11, 12, 7]
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Profiled Attacks

Template Attack is the most powerful attack from the
information theoretic point of view.

Some machine learning techniques (supervised learning) also
belong to the profiled attacks.

Deep learning has been shown to be able to reach top
performance even if the device is protected with
countermeasures.
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Deep Learning

Let us build a neural network.
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Deep Learning

Let us continue adding neurons.
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Deep Learning and SCA

Multilayer Perceptron - “Many” Hidden Layers
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Deep Learning and SCA

Multilayer Perceptron - One Hidden Layer
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Deep Learning and SCA

Universal Approximation Theorem

A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate continuous
functions on compact subsets of Rn.

Given enough hidden units and enough data, multilayer
perceptrons can approximate virtually any function to any
desired accuracy.

Valid results if and only if there is a sufficiently large number
of training data in the series.
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Deep Learning and SCA

Convolutional Neural Networks

CNNs represent a type of neural networks which were first
designed for 2-dimensional convolutions.

They are primarily used for image classification but lately, they
have proven to be powerful classifiers in other domains.

From the operational perspective, CNNs are similar to
ordinary neural networks: they consist of a number of layers
where each layer is made up of neurons.

CNNs use three main types of layers: convolutional layers,
pooling layers, and fully-connected layers.
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Convolutional Neural Networks - Convolution Layer
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Deep Learning and SCA

Convolutional Neural Networks - Pooling
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State-of-the-art

Design Principle - VGG Like CNN

net = fcθ,softmax ◦
P∏

p=1

fcθp ,ReLU ◦
Q∏

q=1

(
poolMax ◦

Rq∏
r=1

convφr ,ReLU
)
,

(1)

convφ,σ(X ) = σ(φ ∗ X ), (2)

fcθ,σ(x) = σ(θᵀx). (3)
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State-of-the-art

Common Architectures
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State-of-the-art

More Complex Architectures
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State-of-the-art

Convolutional Neural Network in SCA
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State-of-the-art

Making the Architectures Even More Powerful

To reduce the overfitting of the model, we introduce noise to
the training phase.

Since in our case, the input normalization is also learned
during the training process via the BN layer, we added the
noise tensor after the first BN.

X ∗ = BN0(X ) + Ψ, Ψ ∼ N (0, α). (4)

The noise tensor follows the normal distribution.
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State-of-the-art

AES
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State-of-the-art

Datasets
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(b) AES HD dataset
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(c) Random Delay dataset
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(d) ASCAD dataset
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State-of-the-art

Results DPAv4

(e) RD network averaged
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State-of-the-art

Results AES HD

(f) ASCAD network averaged

29 / 51



Machine Learning and Implementation Attacks

Deep Learning and SCA

State-of-the-art

Results AES RD

(g) RD network averaged
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Deep Learning and SCA

State-of-the-art

Results ASCAD

(h) ASCAD network averaged
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Deep Learning and SCA

Portability

Profiling Attacks and Portability

There are two devices: one for training and the second one for
attack.

Two devices, different keys.

Usually, we make our lives simpler and assume only one device
and the same key.

It is the same?
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Portability

Setup
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Portability

NICV
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Portability

Same Key and Device
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Portability

Different key and Same Device
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Deep Learning and SCA

Portability

Same Key and Different Device
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Deep Learning and SCA

Portability

Different key and Device
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Deep Learning and SCA

Portability

Validation
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Deep Learning and SCA

Portability

Multiple Device Model

Instead of validating on the same device as training, we need
one more device!

Separate devices for train, validation, attack.

If we do not have a third device, we can use artificial noise.
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Portability

Multiple Device Model
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Deep Learning and SCA

Portability

Problems and “Problems”

Selection of machine learning techniques and hyper-parameter
tuning.

Portability.

Lack of datasets.

Reproducibility and explainability.

Still no clear connection between machine learning and
side-channel analysis metrics.

Countermeasures.

Academia vs. industry perspective.

. . .
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Deep Learning and SCA

Machine Learning for Fault Injection

Introduction

A fault injection (FI) attack is successful if after exposing the
device to a specially crafted external interference, it shows an
unexpected behavior exploitable by the attacker.

Insertion of signals has to be precisely tuned for the fault
injection to succeed.

Finding the correct parameters for a successful FI can be
considered as a search problem.

The search space is typically too large to perform an
exhaustive search.
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Deep Learning and SCA

Machine Learning for Fault Injection

Verdict classes

FI testing equipment can output only verdict classes that
correspond to successful measurements.

Several possible classes for classifying a single measurement:

1 NORMAL: smart card behaves as expected and the glitch is
ignored

2 RESET: smart card resets as a result of the glitch
3 MUTE: smart card stops all communication as a result of the

glitch
4 INCONCLUSIVE: smart card responds in a way that cannot be

classified in any other class
5 SUCCESS: smart card response is a specific, predetermined

value that does not happen under normal operation
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Deep Learning and SCA

Machine Learning for Fault Injection

Approaches

Random search and exhaustive search.

For voltage glitching and EMFI, we can use various heuristics,
like genetic algorithms.

Approaches as exhaustive search cannot work: would last
29 000 years.

For laser FI, the situation is more complex as laser can easily
break the target so we use deep learning.
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Machine Learning for Fault Injection

EMFI and Keccak

(i) Random search (j) GA and local search
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Machine Learning for Fault Injection

LFI and DES
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(m) Prediction with
neural network
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Machine Learning for Fault Injection

LFI and AES
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Conclusions

Conclusions

Machine learning (and even wider, artificial intelligence) play
important role in cryptography.

Currently, attacks perspective seem to be more developed.

In implementation attacks, machine learning represents even
the most powerful option.

Still, our state-of-the-art techniques are usually much simpler
than in other domains.

There are some specific parts one does not encounter in other
domains, but much of the knowledge is transferable.

What do new attacks teach us about improving the
countermeasures?
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Conclusions

Questions?

Thanks for your attention! Q?
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