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Types of Secrets

Crypto Secrets State Secrets Human Secrets
Short-Term 
Session Keys
Long-Term 
Signing Keys
Long-Term 
Decryption Keys

Addresses of Sensitive 
Instructions
Inventory of Installed 
Vulnerable Software
Random Number 
Generator State

Identity
Passwords
Browsing History
Images on Screen
Health Sensors

• What if the secret is compromised?
• How do we protect the secret from attack?
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Website Fingerprinting
• Collect Labeled 

Network Traces
• Extract 

Features
• Train Classifier 

(classical/deep)
• Classify 

Unknown 
Network Traces
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Abstract—Several studies have shown that the network traffic

that is generated by a visit to a website over Tor reveals

information specific to the website through the timing and

sizes of network packets. By capturing traffic traces between

users and their Tor entry guard, a network eavesdropper can

leverage this meta-data to reveal which website Tor users are

visiting. The success of such attacks heavily depends on the

particular set of traffic features that are used to construct the

fingerprint. Typically, these features are manually engineered

and, as such, any change introduced to the Tor network can

render these carefully constructed features ineffective. In this

paper, we show that an adversary can automate the feature

engineering process, and thus automatically deanonymize Tor

traffic by applying our novel method based on deep learning. We

collect a dataset comprised of more than three million network

traces, which is the largest dataset of web traffic ever used for

website fingerprinting, and find that the performance achieved by

our deep learning approaches is comparable to known methods

which include various research efforts spanning over multiple

years. The obtained success rate exceeds 96% for a closed world

of 100 websites and 94% for our biggest closed world of 900

classes. In our open world evaluation, the most performant

deep learning model is 2% more accurate than the state-of-

the-art attack. Furthermore, we show that the implicit features

automatically learned by our approach are far more resilient to

dynamic changes of web content over time. We conclude that

the ability to automatically construct the most relevant traffic

features and perform accurate traffic recognition makes our

deep learning based approach an efficient, flexible and robust

technique for website fingerprinting.

I. INTRODUCTION

The Onion Router (Tor) is a communication tool that pro-

vides anonymity to Internet users. It is an actively developed

and well-secured system that ensures the privacy of its users’

browsing activities. For this purpose, Tor encrypts the contents

and routing information of communications, and relays the

encrypted traffic through a randomly assigned route of nodes

such that only a single node knows its immediate peers, but

never the origin and destination of a communication at the

same time. Tor’s architecture thus prevents ISPs and local

network observers from identifying the websites users visit.

As a result of previous research on Tor privacy, a serious

side-channel of Tor network traffic was revealed that allowed

a local adversary to infer which websites were visited by a

particular user [14]. The identifying information leaks from

the communication’s meta-data, more precisely, from the di-

rections and sizes of encrypted network packets. As this side-

channel information is often unique for a specific website, it

can be leveraged to form a unique fingerprint, thus allowing

network eavesdroppers to reveal which website was visited

based on the traffic that it generated.

The feasibility of Website Fingerprinting (WF) attacks on

Tor was assessed in a series of studies [25], [31], [19], [24],

[32]. In the related works, the attack is treated as a classi-

fication problem. This problem is solved by, first, manually

engineering features of traffic traces and then classifying these

features with state-of-practice machine learning algorithms.

Proposed approaches have been shown to achieve a classifica-

tion accuracy of 91-96% correctly recognized websites [30],

[24], [13] in a set of 100 websites with 100 traces per website.

Their works show that finding distinctive features is essential

for accurate recognition of websites. Moreover, this tasks can

be costly for the adversary as he has to keep up with changes

introduced in the network protocol [4], [20], [9]. The WF

research community thus far has not investigated the success

of an attacker who automates the feature extraction step for

classification. This is the key problem that we address in this

work.
An essential step of traditional machine learning is feature

engineering. Feature engineering is a manual process, based on

intuition and expert knowledge, to find a representation of raw

data that conveys characteristics that are most relevant to the

learning problem. Feature engineering proved to be even more

important than the choice of the specific machine learning

algorithm in many applications, including WF [12], [19].

When developing a new WF attack, prior work on WF

typically focuses on feature engineering to compose and select

the most salient features for website identification. Moreover,

these attacks are actually defined by a fixed set of features

derived from this process. Thus, these attacks are sensitive

to changes in the traffic that would distort those features. In
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How is WF Evaluated?
• Main metric is 

accuracy 
• Closed World 

vs Open World
• Base rate is 

important!
• Network based 

WF has >90% 
accuracy
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Cache-Based WF
• Collect Labeled 

Memorygrams
• Extract 

Features
• Train Classifier 

(classical/deep)
• Classify 

Unknown 
Memorygrams
• >90% accuracy



Cache-based vs Net-based WF

Cache beats Net Net beats Cache

Resists net countermeasures Can be detected by victim

Robust to response caching Depends on hardware config

Works across NICs

Lighter attack model



Countermeasures

• Hiding
• Lowering the SNR
• Hiding in Time
• Hiding in Amplitude

• Masking
• Secret Invariance
• Separation in Time
• Separation in Space



Hiding in amplitude

• Idea: run a dummy prime and probe in the 
background
• What is the effect on WF accuracy?
• What is the effect on performance?



Effect on Accuracy
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Effect on Performance
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Sustainability

Source: Bilge and Dumitras, CCS 2012



Humans
• Non upgradable, difficult to patch
• Fight security with all their might
• Semi Rational



Thank you!

• Dataset freely available under 
CC-BY 4.0 license
• Contains:
• Thousands of memorygrams in 

multiple settings 
• Associated network traces
• Deep learning classifiers in Python

https://orenlab.sise.bgu.ac.il/p/RobustFingerprinting

https://orenlab.sise.bgu.ac.il/p/RobustFingerprinting
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