
Side-Channel Attacks
and Human Secrets

Yossi Oren, BGU
https://iss.oy.ne.ro

@yossioren

CROSSING Conference,TU Darmstadt, Germany
September 2019

Joint work with Anatoly Shusterman, Lachlan Kang, Yosef
Meltser, Yarden Haskal, Prateek Mittal and Yuval Yarom

https://iss.oy.ne.ro/

https://orenlab.sise.bgu.ac.il

Output

μ-A
rchEM

Heat

Power

Vibrat
ion

Timing

Secure Device

Radiation

Implementation Attacks

Bad Input Errors

3

Secret

Input

Types of Secrets

Crypto Secrets State Secrets Human Secrets
Short-Term
Session Keys
Long-Term
Signing Keys
Long-Term
Decryption Keys

Addresses of Sensitive
Instructions
Inventory of Installed
Vulnerable Software
Random Number
Generator State

Identity
Passwords
Browsing History
Images on Screen
Health Sensors

• What if the secret is compromised?
• How do we protect the secret from attack?

Target
PC

Target Adversary
Target

Browser

Sensitive
Website

Target
PC

Target Adversary
Target

Browser

Sensitive
Website

Tor Network

Website Fingerprinting
• Collect Labeled

Network Traces
• Extract

Features
• Train Classifier

(classical/deep)
• Classify

Unknown
Network Traces

Automated Website Fingerprinting

through Deep Learning

Vera Rimmer⇤ , Davy Preuveneers⇤ , Marc Juarez§ , Tom Van Goethem⇤ and Wouter Joosen⇤

⇤ imec-DistriNet, KU Leuven

Email: {firstname.lastname}@cs.kuleuven.be

§ imec-COSIC, ESAT, KU Leuven

Email: marc.juarez@esat.kuleuven.be

Abstract—Several studies have shown that the network traffic

that is generated by a visit to a website over Tor reveals

information specific to the website through the timing and

sizes of network packets. By capturing traffic traces between

users and their Tor entry guard, a network eavesdropper can

leverage this meta-data to reveal which website Tor users are

visiting. The success of such attacks heavily depends on the

particular set of traffic features that are used to construct the

fingerprint. Typically, these features are manually engineered

and, as such, any change introduced to the Tor network can

render these carefully constructed features ineffective. In this

paper, we show that an adversary can automate the feature

engineering process, and thus automatically deanonymize Tor

traffic by applying our novel method based on deep learning. We

collect a dataset comprised of more than three million network

traces, which is the largest dataset of web traffic ever used for

website fingerprinting, and find that the performance achieved by

our deep learning approaches is comparable to known methods

which include various research efforts spanning over multiple

years. The obtained success rate exceeds 96% for a closed world

of 100 websites and 94% for our biggest closed world of 900

classes. In our open world evaluation, the most performant

deep learning model is 2% more accurate than the state-of-

the-art attack. Furthermore, we show that the implicit features

automatically learned by our approach are far more resilient to

dynamic changes of web content over time. We conclude that

the ability to automatically construct the most relevant traffic

features and perform accurate traffic recognition makes our

deep learning based approach an efficient, flexible and robust

technique for website fingerprinting.

I. INTRODUCTION

The Onion Router (Tor) is a communication tool that pro-

vides anonymity to Internet users. It is an actively developed

and well-secured system that ensures the privacy of its users’

browsing activities. For this purpose, Tor encrypts the contents

and routing information of communications, and relays the

encrypted traffic through a randomly assigned route of nodes

such that only a single node knows its immediate peers, but

never the origin and destination of a communication at the

same time. Tor’s architecture thus prevents ISPs and local

network observers from identifying the websites users visit.

As a result of previous research on Tor privacy, a serious

side-channel of Tor network traffic was revealed that allowed

a local adversary to infer which websites were visited by a

particular user [14]. The identifying information leaks from

the communication’s meta-data, more precisely, from the di-

rections and sizes of encrypted network packets. As this side-

channel information is often unique for a specific website, it

can be leveraged to form a unique fingerprint, thus allowing

network eavesdroppers to reveal which website was visited

based on the traffic that it generated.

The feasibility of Website Fingerprinting (WF) attacks on

Tor was assessed in a series of studies [25], [31], [19], [24],

[32]. In the related works, the attack is treated as a classi-

fication problem. This problem is solved by, first, manually

engineering features of traffic traces and then classifying these

features with state-of-practice machine learning algorithms.

Proposed approaches have been shown to achieve a classifica-

tion accuracy of 91-96% correctly recognized websites [30],

[24], [13] in a set of 100 websites with 100 traces per website.

Their works show that finding distinctive features is essential

for accurate recognition of websites. Moreover, this tasks can

be costly for the adversary as he has to keep up with changes

introduced in the network protocol [4], [20], [9]. The WF

research community thus far has not investigated the success

of an attacker who automates the feature extraction step for

classification. This is the key problem that we address in this

work.
An essential step of traditional machine learning is feature

engineering. Feature engineering is a manual process, based on

intuition and expert knowledge, to find a representation of raw

data that conveys characteristics that are most relevant to the

learning problem. Feature engineering proved to be even more

important than the choice of the specific machine learning

algorithm in many applications, including WF [12], [19].

When developing a new WF attack, prior work on WF

typically focuses on feature engineering to compose and select

the most salient features for website identification. Moreover,

these attacks are actually defined by a fixed set of features

derived from this process. Thus, these attacks are sensitive

to changes in the traffic that would distort those features. In

Network and Distributed Systems Security (NDSS) Symposium 2018

18-21 February 2018, San Diego, CA, USA

ISBN 1-1891562-49-5

http://dx.doi.org/10.14722/ndss.2018.23105

www.ndss-symposium.org

ar
X

iv
:1

70
8.

06
37

6v
2

 [c
s.C

R]
 5

 D
ec

 2
01

7

How is WF Evaluated?
• Main metric is

accuracy
• Closed World

vs Open World
• Base rate is

important!
• Network based

WF has >90%
accuracy

Automated Website Fingerprinting

through Deep Learning

Vera Rimmer⇤ , Davy Preuveneers⇤ , Marc Juarez§ , Tom Van Goethem⇤ and Wouter Joosen⇤

⇤ imec-DistriNet, KU Leuven

Email: {firstname.lastname}@cs.kuleuven.be

§ imec-COSIC, ESAT, KU Leuven

Email: marc.juarez@esat.kuleuven.be

Abstract—Several studies have shown that the network traffic

that is generated by a visit to a website over Tor reveals

information specific to the website through the timing and

sizes of network packets. By capturing traffic traces between

users and their Tor entry guard, a network eavesdropper can

leverage this meta-data to reveal which website Tor users are

visiting. The success of such attacks heavily depends on the

particular set of traffic features that are used to construct the

fingerprint. Typically, these features are manually engineered

and, as such, any change introduced to the Tor network can

render these carefully constructed features ineffective. In this

paper, we show that an adversary can automate the feature

engineering process, and thus automatically deanonymize Tor

traffic by applying our novel method based on deep learning. We

collect a dataset comprised of more than three million network

traces, which is the largest dataset of web traffic ever used for

website fingerprinting, and find that the performance achieved by

our deep learning approaches is comparable to known methods

which include various research efforts spanning over multiple

years. The obtained success rate exceeds 96% for a closed world

of 100 websites and 94% for our biggest closed world of 900

classes. In our open world evaluation, the most performant

deep learning model is 2% more accurate than the state-of-

the-art attack. Furthermore, we show that the implicit features

automatically learned by our approach are far more resilient to

dynamic changes of web content over time. We conclude that

the ability to automatically construct the most relevant traffic

features and perform accurate traffic recognition makes our

deep learning based approach an efficient, flexible and robust

technique for website fingerprinting.

I. INTRODUCTION

The Onion Router (Tor) is a communication tool that pro-

vides anonymity to Internet users. It is an actively developed

and well-secured system that ensures the privacy of its users’

browsing activities. For this purpose, Tor encrypts the contents

and routing information of communications, and relays the

encrypted traffic through a randomly assigned route of nodes

such that only a single node knows its immediate peers, but

never the origin and destination of a communication at the

same time. Tor’s architecture thus prevents ISPs and local

network observers from identifying the websites users visit.

As a result of previous research on Tor privacy, a serious

side-channel of Tor network traffic was revealed that allowed

a local adversary to infer which websites were visited by a

particular user [14]. The identifying information leaks from

the communication’s meta-data, more precisely, from the di-

rections and sizes of encrypted network packets. As this side-

channel information is often unique for a specific website, it

can be leveraged to form a unique fingerprint, thus allowing

network eavesdroppers to reveal which website was visited

based on the traffic that it generated.

The feasibility of Website Fingerprinting (WF) attacks on

Tor was assessed in a series of studies [25], [31], [19], [24],

[32]. In the related works, the attack is treated as a classi-

fication problem. This problem is solved by, first, manually

engineering features of traffic traces and then classifying these

features with state-of-practice machine learning algorithms.

Proposed approaches have been shown to achieve a classifica-

tion accuracy of 91-96% correctly recognized websites [30],

[24], [13] in a set of 100 websites with 100 traces per website.

Their works show that finding distinctive features is essential

for accurate recognition of websites. Moreover, this tasks can

be costly for the adversary as he has to keep up with changes

introduced in the network protocol [4], [20], [9]. The WF

research community thus far has not investigated the success

of an attacker who automates the feature extraction step for

classification. This is the key problem that we address in this

work.
An essential step of traditional machine learning is feature

engineering. Feature engineering is a manual process, based on

intuition and expert knowledge, to find a representation of raw

data that conveys characteristics that are most relevant to the

learning problem. Feature engineering proved to be even more

important than the choice of the specific machine learning

algorithm in many applications, including WF [12], [19].

When developing a new WF attack, prior work on WF

typically focuses on feature engineering to compose and select

the most salient features for website identification. Moreover,

these attacks are actually defined by a fixed set of features

derived from this process. Thus, these attacks are sensitive

to changes in the traffic that would distort those features. In

Network and Distributed Systems Security (NDSS) Symposium 2018

18-21 February 2018, San Diego, CA, USA

ISBN 1-1891562-49-5

http://dx.doi.org/10.14722/ndss.2018.23105

www.ndss-symposium.org

ar
X

iv
:1

70
8.

06
37

6v
2

 [c
s.C

R]
 5

 D
ec

 2
01

7

Target PC

Adversary Sensitive
Website

Tor Network

Traffic Moulding
Defenses against WF

+

Source: lakeland.co.uk

Target
Target

Browser

Sensitive
Website

Tor NetworkArchitectural
Boundary

Adversary

Memorygrams
Wikipedia

Github

Oracle

Cache-Based WF
• Collect Labeled

Memorygrams
• Extract

Features
• Train Classifier

(classical/deep)
• Classify

Unknown
Memorygrams
• >90% accuracy

Cache-based vs Net-based WF

Cache beats Net Net beats Cache

Resists net countermeasures Can be detected by victim

Robust to response caching Depends on hardware config

Works across NICs

Lighter attack model

Countermeasures

• Hiding
• Lowering the SNR
• Hiding in Time
• Hiding in Amplitude

• Masking
• Secret Invariance
• Separation in Time
• Separation in Space

Hiding in amplitude

• Idea: run a dummy prime and probe in the
background
• What is the effect on WF accuracy?
• What is the effect on performance?

Effect on Accuracy

0

10

20

30

40

50

60

70

80

90

100

Firefox 59 CW Firefox 59 OW Tor CW Tor OW

ML with Cache Activity Masking

Without Countermeasure With Countermeasure Baseline

Effect on Performance

0%

5%

10%

15%

20%

perlbench
bzip2
gcc

m
cf

gobm
k

hm
m

er
sjeng
libquantum
h264ref
om

netpp
astar
xalancbm

k
IN

T

bw
aves

gam
ess

m
ilc

zeusm
p

grom
acs

cactusA
D

M
leslie3d
nam

d
dealII
soplex
povray
calculix
G

em
sF

D
T
D

tonto

lbm

w
rf

sphinx3
F
P

S
lo

w
d
o
w

n

Sustainability

Source: Bilge and Dumitras, CCS 2012

Humans
• Non upgradable, difficult to patch
• Fight security with all their might
• Semi Rational

Thank you!

• Dataset freely available under
CC-BY 4.0 license
• Contains:
• Thousands of memorygrams in

multiple settings
• Associated network traces
• Deep learning classifiers in Python

https://orenlab.sise.bgu.ac.il/p/RobustFingerprinting

https://orenlab.sise.bgu.ac.il/p/RobustFingerprinting

JavaScript Attack Results

0.1

1

10

100

0

20

40

60

80

100

Linux -
Chrome64

Win -
Chrome64

MacOS -
Safari1.1

Linux -
Firefox59

Win -
Firefox59

Closed World – Base Rate 1%

Accuracy CNN Accuracy LSTM Timer Resolution

Timer
Resolution
(msec)

Accurac (%)

JavaScript Attack Results

1

10

100

0

20

40

60

80

100

TorBrowser 7.5 TorBrowser 7.5 (top5)

Closed World – Base Rate 1%

Accuracy CNN Accuracy LSTM

Timer Resolution

Timer
Resolution
(msec)

Accurac (%)

JavaScript Attack Results

0.1

1

10

100

0

20

40

60

80

100

Linux -
Chrome64

Win -
Chrome64

MacOS -
Safari1.1

Linux -
Firefox59

Win -
Firefox59

Open World – Base Rate 33%

Accuracy CNN Accuracy LSTM Timer Resolution

Timer
Resolution
(msec)

Accurac (%)

JavaScript Attack Results

1

10

100

0

20

40

60

80

100

TorBrowser 7.5 TorBrowser 7.5 (top5)

Open World – Base Rate 33%

Accuracy CNN Accuracy LSTM

Timer Resolution

Timer
Resolution
(msec)

Accuracy (%)

