Towards a model of trust drawn from neuroscience, psychology, and economics:

Implications for the New and Next Generation Computing Environments

Frank Krueger, Ph.D.

Associate Professor of Systems Social Neuroscience

School of Systems Biology George Mason University, VA, USA

Chief, Social Cognition and Interaction: Functional Imaging (SCI:FI) Lab

Director, Transdisciplinary Research Union for the Study of Trust (T-R-U-S-T)

CROSSING Conference 2019 Darmstadt 9|10|19

To Trust or Not to Trust: That is the Question

Why Should We Care About Trust?

http://bahaiteachings.org/free-society-depends-trust-trustworthiness

https://medium.com/nhct-nanohealth-care-token/decentralizedvs-centralized-systems-cb31b95928c5

Parable: The Blind Men and the Elephant

ttps://equilibregaia.files.wordpress.com/2011/02/conte-sufc3ad0001-copiaeng.jpg?w=1075

NeuroPsychoEconomic Approach

Definition & Paradigm

https://www.theodysseyonline.com/trust-underestimated-fear

Interpersonal trust encompasses one's willingness to accept **vulnerability** based on the expectation regarding the behavior of another party that will produce some positive outcome in the future.

Working Definition of Trust

Trust in <u>reciprocity</u> entails a psychological state in which a **trustor** is willing to be vulnerable to the risk of **treachery** (affect) based on the **expectation** (cognition) regarding the action of a **trustee** that will produce some anticipated **reward** (motivation) due to reciprocation in the future.

NeuroPsychoEconomic Framework

Behavior: Trust Game

NeuroPsychoEconomic Framework

Lewicki & Bunker (1995)

Krueger & Meyer-Lindenberg (TINS, 2019)

NeuroPsychoEconomic Framework

Functional Neuroimaging

Blood Oxygen Level Dependent (BOLD) Signal

↑ neural activity → ↑ blood flow → ↑ de-/ oxygenated Hgb → ↑ T2* → ↑ MR signal

Task-Based Functional MRI

M2

Reciprocity

Trustor

 $\mathbf{T} - \mathbf{R} - \mathbf{U} - \mathbf{S} - \mathbf{T}$

Trustee

Domain-General Large-Sale Networks

CBT, calculus-based trust; KBT, knowledge-based trust; IBT, identification-based trust; VTA, vental tegmentum area; SN; substantia nigra; dSTR, dorsal striatum; vSTR, ventral striatum; vmPFC, ventromedial prefrontal cortex; AI, anterior insula; dACC, dorsal anterior cingulate cortex; TPJ, temporoparietal junction; dmPFC; dorsomedial PFC; dIPFC, dorsolateral PFC; vIPFC, ventrolateral PFC

Social Dilemma: Formation

VTA, vental tegmentum area; SN; substantia nigra; dSTR, dorsal striatum; vSTR, ventral striatum; vmPFC, ventromedial prefrontal cortex; AI, anterior insula; dACC, dorsal anterior cingulate cortex; TPJ, temporoarietal junction; dmPFC; dorsomedial PFC; dIPFC, dorsolateral PFC; vIPFC, ventrolateral PFC

Reward Network = Reward

Anticipation of Reward

- Subjective Reward Value (Utility)
 - Ventromedial prefrontal cortex (vmPFC)
- Reinforcement Learning
 - Striatum (STR)

VTA, vental tegmentum area; SN; substantia nigra; dSTR, dorsal striatum; vSTR, ventral striatum; vmPFC, ventromedial prefrontal cortex; AI, anterior insula; dACC, dorsal anterior cingulate cortex; TPJ, temporoarietal junction; dmPFC; dorsomedial PFC; dIPFC, dorsolateral PFC; vIPFC, ventrolateral PFC

Salience Network = Treachery

Risk of Treachery

- Threat of Treachery (Emotional Response)
 - Amygdala
- Treachery Aversion (Subjective Feeling)
 - Anterior Insula (AI)
- Treachery vs. Reward (Monitoring)

VTA, vental tegmentum area; SN; substantia nigra; dSTR, dorsal striatum; vSTR, ventral striatum; vmPFC, ventromedial prefrontal cortex; AI, anterior insula; dACC, dorsal anterior cingulate cortex; TPJ, temporoarietal junction; dmPFC; dorsomedial PFC; dIPFC, dorsolateral PFC; vIPFC, ventrolateral PFC

Social Dilemma: Resolution

VTA, vental tegmentum area; SN; substantia nigra; dSTR, dorsal striatum; vSTR, ventral striatum; vmPFC, ventromedial prefrontal cortex; AI, anterior insula; dACC, dorsal anterior cingulate cortex; TPJ, temporoarietal junction; dmPFC; dorsomedial PFC; dIPFC, dorsolateral PFC; vIPFC, ventrolateral PFC

Insula subdivisions

dAIC co-activation associated with cognitive processing areas vAIC co-activation associated with affective processing areas

Uddin (2014

Default-Mode Network = Trustworthiness

Evaluation of Trustworthiness

- Inferring and Attributing of Traits
 - Dorsomedial prefrontal cortex (dmPFC)
- Inferring and Attributing of Intentions
 - Temporoparietal junction (TPJ)

VTA, vental tegmentum area; SN; substantia nigra; dSTR, dorsal striatum; vSTR, ventral striatum; vmPFC, ventromedial prefrontal cortex; AI, anterior insula; dACC, dorsal anterior cingulate cortex; TPJ, temporoarietal junction; dmPFC; dorsomedial PFC; dIPFC, dorsolateral PFC; vIPFC, ventrolateral PFC

Central-Executive Network = Strategy

Context-Based Adaption of Strategy

- Accounting Conflicting Evidence
 - Dorsolateral PFC (dIPFC)
- Disaccounting Conflicting Evidence
 - Ventrolateral PFC (vIPFC)

VTA, vental tegmentum area; SN; substantia nigra; dSTR, dorsal striatum; vSTR, ventral striatum; vmPFC, ventromedial prefrontal cortex; AI, anterior insula; dACC, dorsal anterior cingulate cortex; TPJ, temporoarietal junction; dmPFC; dorsomedial PFC; dIPFC, dorsolateral PFC; vIPFC, ventrolateral PFC

Types of Trust

ALE: 30 papers, 10,000 permutations, cluster forming threshold of P < 0.001, k>90

Bellucci et al., 2016

NeuroPsychoEconomic Framework

Hormone & Neurotransmitter

Meyer-Lindenberg et al., 2011

anterior cingulate cortex (ACC), suprachiasmatic nucleus (SCN), nucleus accumbens (NA), bed nucleus of stria terminalis (BNST)

2

Interactionist Model

Kosfeld et al., 2005

NeuroPsychoEconomic Framework

Birbaumer & Schmitt 2010

Oxytocin-Receptor Gene

Krueger et al., 2012

Summary: T-R-U-S-T Model

CBT, calculus-based trust; KBT, knowledge-based trust; IBT, identification-based trust; VTA, vental tegmentum area; SN; substantia nigra; dSTR, dorsal striatum; vSTR, ventral striatum; vmPFC, ventromedial prefrontal cortex; AI, anterior insula; dACC, dorsal anterior cingulate cortex; TPJ, temporoparietal junction; dmPFC; dorsomedial PFC; dIPFC, dorsolateral PFC; vIPFC, ventrolateral PFC

Outlook: What's next?

T-R-U-S-T³ Initiative

<u>Transdisciplinary</u> <u>Research</u> <u>Union</u> for the <u>Study</u> of <u>Trust</u> (T-R-U-S-T)

Trust Architectures

Different architectures give rise to a trust trade-off, in which users give up some freedom to gain the benefits of trust.

Peer-to-Peer

Black elments =

Intermediary

People must heed the norms of the community. People cede control over personal data.

Power of Sanctions to Promote Trusts.

Blockchain

Promoting trust in a network without trusting any individual actor.

"Trustless Trust"

Centralized trust creates vulnerabilities and is not transitive.

Crypto-Economics

Blockchain — Too Trusted to Fail?

Trust Architectures

Different architectures give rise to a trust trade-off, in which users give up some freedom to gain the benefits of trust.

Peer-to-Peer

Black elments =

Intermediary

People must heed the norms of the community.

People cede control over personal data.

Power of Sanctions to Promote Trusts.

Blockchain

Promoting trust in a network without trusting any individual actor.

"Trustless Trust"

Centralized trust creates vulnerabilities and is not transitive.

Werbach, 2018

Crypto-Economics => **Crypto-Psycho-Economics**

Towards a model of trust drawn from neuroscience, psychology, and economics:

Implications for the New and Next Generation Computing Environments

Frank Krueger, Ph.D.

Social Cognition and Interaction: Functional Imaging (SCI:FI) Lab

> www.scifi-lab.com FKrueger@gmu.de

CROSSING Conference 2019 Darmstadt 9|10|19