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The Great Promise of Trusted Computing
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Historical Overview: Deployed Systems 
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Trusted Computing under Attack 
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Goal: Self-Contained Security
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Intel Software Guard Extensions (SGX)
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Intel Software Guard Extensions (SGX)
• OS creates and manages enclaves, allocates memory from Enclave Page Cache (EPC) 

• OS maps physical to virtual memory, as well as loads data and code into enclave

• Trust assumptions: All software components untrusted
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Intel Software Guard Extensions (SGX)

• Asynchrones Enclave Exit (AEX): Enclaves interruptable, CPU 
saves/deletes context in CPU registers
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Code-reuse Attacks: Big Picture
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Code-reuse Attacks: Big Picture
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Hacking in Darkness: ROP against Secure Enclaves

• Memory corruption attack against Intel SGX (Dark-ROP)

• Combines ROP techniques with oracles that inform about internal 
state of a victim enclave

• Requires kernel privileges 

• Relies on running the target enclave multiple times and crashes to 
leak information

• Demonstrates how the security of SGX can be disarmed 
• Exfiltration of all memory contents from the enclave (code and data)
• Bypassing the SGX attestation
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[Lee et al., USENIX Security 2017]

11



SGX-Shield: Randomization for SGX Enclaves

• Address Space Layout Randomization (ASLR) for SGX enclaves

• Effective against ROP, since it relies on addresses of code snippets 
(gadgets)

• Limited entropy due to limited memory space

• Still effective against Dark-ROP
• Since an enclave will be re-randomized after the crash
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[Seo et al., NDSS 2017]
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SGX SDK and The Guard’s Dilemma
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SGX SDK and The Guard’s Dilemma

• tRTS is not randomized by SGX-Shield

• It cannot be randomized due to architectural specifics
• E.g., enclave functions are invoked using fixed pre-defined entry points

• Contributions by Biondo et al.:
• show that tRTS has enough gadgets to mount ROP

• develop new techniques that do not require enclave crashes 

• new techniques do not require kernel privileges from an attacker
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Side-Channel Attack: General Principle
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Page Fault Attacks on SGX
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Cache Attacks on SGX: Hack in The Box 
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Prime + Probe
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How to measure the time difference?

• #1: Time Stamp Counter (TSC)
• Not precise enough to reliably distinguish the difference between L1 vs. L2 hits 
• Reading the time stamp counter by itself suffers from noise

• #2: Counting thread: 
- a thread that only performs a loop that constantly increments a value (basically a 

timer)
- Slows down the victim, can be detected

• #3: Performance Monitoring Counter (PMC): 
- can be configured to count different events:  executed cycles, cache hits or cache 

misses for the different caches, mis-predicted branches, etc. 
- Anti Side-channel Interference (ASCI) feature: 

- Can be configured to disable thread-specific performance monitoring of enclaves
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Side-Channel Grand Challenge: Noise

• Operating System and any other software running on the platform 
generate noise

• Even attacker’s own code pollutes the cache
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Cache Attacks on SGX
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SGX Side-Channel Attacks Comparison
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Attack Type
Observed 

Cache
Interrupting 

Victim
Time 

Measurement
Attacker 

Code
Attacked

Victim

Lee et al.
Branch 

Shadowing
BTB / LBR Yes Execution Timing OS

RSA & SVM 
classifier

Moghimi et al. Prime + Probe L1(D) Yes TCS OS AES

Götzfried et al. Prime + Probe L1(D) No PCM OS AES

Our Attack Prime + Probe L1(D) No PCM OS
RSA & 

Genome 
Sequencing

Schwarz et al. Prime + Probe L3 No Counting Thread Enclave AES

PCM: Performance Counter Monitor BTB: Branch Target Buffer    LBR: Last Branch Record      TSC: Time Stamp Counter
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Our Attack
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Uninterrupted execution
• Attacker assigns victim and attacker code to the 

same core, all other tasks to others
• Attacker assigns victim and attacker code to 

different SMT threads
• Monitors only one cache set per execution to 

increase measurement resolution

[Brasser et al., WOOT’17]
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Reducing noise
Use kernel sysfs interface to assign interrupts
to other cores
• Timer interrupt (per thread) cannot be reassigned
• Lowered timer frequency to 100Hz (i.e., every 10ms)

[Brasser et al., WOOT’17]
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Prime+Probe attack using L1 data cache
• Eviction detection using Performance Counter 

Monitor (L1D_REPLACEMENT)
• Anti Side-Channel Interference (ASCI) not effective, 

monitoring cache events of attacker possible

[Brasser et al., WOOT’17]
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Our Attack Use-Cases
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• Attacking open source k-mer analysis tool 
PRIMEX  [Lexa et al., Bioinformatics 2003]

• Extracting genome sequences

[arXiv:1702.07521] [Brasser et al., WOOT 2017]

• Attacking RSA implementation from the 
Intel IIP crypto library in the Intel SGX SDK

• Extracting 2048-bit RSA decryption key
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Extracting RSA decryption key
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RSA Key Exfiltration: Victim Enclave

• RSA Decryption:  m = cd (mod N)
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RSA Key Exfiltration: Victim Enclave

• RSA Decryption:  m = cd (mod N)
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Secret-dependent memory access!
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Fixed-size Sliding Window Exponentiation
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Attack Result

• 2048-bit Chinese Remainder Theorem RSA key

• Only 300 decryptions to leak 70% of key bits

• Enough to recover key [Heninger et. al., CRYPTO’09]
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TimeEach colored dot represents a multiplier access candidate, 15 monitoring rounds
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Genome Sequencing
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Genome Analysis Enclave (e.g. PRIMEX)
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TTGACCCACTGAATCACGTCTG…

Encrypted Genome Sequence
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Genome Sequencing
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Pre-processing

• Split input into 
sub-sequences 
(k-mer)

• Store k-mer
positions in hash-
table 

Analysis

• Statistical 
analysis, e.g., to 
identify 
correlation in 
the data

Genome Analysis Enclave (e.g. PRIMEX)

TTGACCCACTGAATCACGTCTG…

Encrypted Genome Sequence

31



Genome Sequencing
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Pre-processing

• Split input into 
sub-sequences 
(k-mer)

• Store k-mer
positions in hash-
table 

Analysis

• Statistical 
analysis, e.g., to 
identify 
correlation in 
the data

Genome Analysis Enclave (e.g. PRIMEX)

ATCGATCGATCG…

Attacker’s goal: Identify k-mer
sequences in the input string, 
allowing the identification of 

individuals

TTGACCCACTGAATCACGTCTG…

Encrypted Genome Sequence
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Some Basics on Human Genomes
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TTGACCCACTGAATCACGTCTGACCGCGCGTACGCGG
TCACTTGCGGTGCCGTTTTCTTTGTTACCGACGACCG
ACCAGCGACAGCCACCGCGCGCTCACTGCCACCAAAA
GAGTCATATCGATCGATCGATCGATCGATCGATCGAT
CGATCGATCGATCGATCGATCGATCGATCGATCATCA
CAGCCGACCAGTTTCTGGAACGTTCCCGATACTGGAA
CGGTCCTAATGCAGTATCCCACCCTCCTTCCATCGAC
GCCAGTCGAATCACGCCGCCAGCCACCGTCCGCCAGC
CGGCCAGAATACCGATGACTCGGCGGTCTCGTGTCGG
TGCCGGCCTCGCAGCCATTGTACTGGCCCTGGCCGCA
GTGTCGGCTGCCGCTCCGATTGCCGGGGCGCAGTCCG
CCGGCAGCGGTGCGGTCTCAGTCACCATCGGCGACGT
GGACGTCTCGCCTGCGAACCCAACCACGGGCACGCAG
GTGTTGATCACCCCGTCGATCAACAACTCCGGATCGG
CAAGCGGGTCCGCGCGCGTCAACGAGGTCACGCTGCG
CGGCGACGGTCTCCTCGCAACGGAAGACAGCCTGGGG
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Some Basics on Human Genomes
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• Nucleobases
• Adenine (A)
• Cytosine (C)
• Guanine (G)
• Thymine (T)

• Microsatellite
• Forensic analysis
• Genetic fingerprinting
• Kinship analysis

TTGACCCACTGAATCACGTCTGACCGCGCGTACGCGG
TCACTTGCGGTGCCGTTTTCTTTGTTACCGACGACCG
ACCAGCGACAGCCACCGCGCGCTCACTGCCACCAAAA
GAGTCATATCGATCGATCGATCGATCGATCGATCGAT
CGATCGATCGATCGATCGATCGATCGATCGATCATCA
CAGCCGACCAGTTTCTGGAACGTTCCCGATACTGGAA
CGGTCCTAATGCAGTATCCCACCCTCCTTCCATCGAC
GCCAGTCGAATCACGCCGCCAGCCACCGTCCGCCAGC
CGGCCAGAATACCGATGACTCGGCGGTCTCGTGTCGG
TGCCGGCCTCGCAGCCATTGTACTGGCCCTGGCCGCA
GTGTCGGCTGCCGCTCCGATTGCCGGGGCGCAGTCCG
CCGGCAGCGGTGCGGTCTCAGTCACCATCGGCGACGT
GGACGTCTCGCCTGCGAACCCAACCACGGGCACGCAG
GTGTTGATCACCCCGTCGATCAACAACTCCGGATCGG
CAAGCGGGTCCGCGCGCGTCAACGAGGTCACGCTGCG
CGGCGACGGTCTCCTCGCAACGGAAGACAGCCTGGGG
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Genome Pre-Processing
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Hash Table

Indexer

AG CA G CA T C AG GT A C…
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• Hash table access pattern
• Hash table entry 8 bytes

• Cache line size 64 bytes
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• Microsatellites structured
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…

Hash Table

0 3

1

2

Indexer

• Hash table access pattern
• Hash table entry 8 bytes

• Cache line size 64 bytes

• Collisions

• Genome unstructured

• Microsatellites structured

AG CA G CA T C AG GT A C…

TTGACCCACTGAATCACGTCTGACCGCGCGTACGCGGTCACTTGC
GGTGCCGTTTTCTTTGTTACCGACGACCGACCAGCGACAGCCACC
GCGCGCTCACTGCCACCAAAAGAGTCATATCGATCGATCGATCGA
TCGATCGATCGATCGATCGATCGATCGATCGATCGATCGATCGAT
CATCACAGCCGACCAGTTTCTGGAACGTTCCCGATACTGGAACGG
TCCTAATGCAGTATCCCACCCTCCTTCCATCGACGCCAGTCGAAT
CACGCCGCCAGCCACCGTCCGCCAGCCGGCCAGAATACCGATGAC
TCGGCGGTCTCGTGTCGGTGCCGGCCTCGCAGCCATTGTACTGGC
CCTGGCCGCAGTGTCGGCTGCCGCTCCGATTGCCGGGGCGCAGTC
CGCCGGCAGCGGTGCGGTCTCAGTCACCATCGGCGACGTGGACGT
CTCGCCTGCGAACCCAACCACGGGCACGCAGGTGTTGATCACCCC
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Microsatellites and Processed k-mers
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Genome Sequencing Attack Results

• Monitor cache lines associated to satellite

• High activity in cache lines reveal occurrence of satellite in input 
string
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Genome Sequencing Attack Results

• Monitor cache lines associated to satellite

• High activity in cache lines reveal occurrence of satellite in input 
string
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Speculative Execution Attacks
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Speculative Execution Bug
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Meltdown

• Exploits speculative execution bug
 attacker can read arbitrary physical memory (including 

kernel memory) from an unprivileged user process

 this can be used, e.g., to break kernel ASLR 
from unprivileged process

 or, to extract secrets from Intel SGX enclaves!
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Foreshadow: Meltdown against SGX

• Foreshadow [Van Bulck, USENIX Security 2018]

• Extract long-term secrets from Intel 
Launching and Quoting Enclaves

• Speculative access only possible 
for data in L1 cache

• Implications
• Attacker can bypass vetting of enclaves by 

Intel

• Attacker can forge local and remote 
attestations sent to other enclaves and to 
remote parties

SEPTEMBER 9 – 13, 2019 CROSSING Summer School on Sustainable Security & Privacy
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How to Get Enclave Data into L1 Cache?

• Run enclave and interrupt when target data was used
• The enclave’s usage of the target data brings it into the cache

• Use SGX paging mechanism
• OS can swap in/out pages of enclaves

• When an enclave page is swapped in, its content is loaded into L1 cache

• Malicious OS can run attack without even running the enclave
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Defenses Against Foreshadow 

• Flush L1 cache on enclave exit 
• Provided via microcode update
• Only effective without hyperthreading

• Include hyperthreading configuration in attestation report
• “[…] the Intel SGX attestation will indicate whether hyperthreading has been 

enabled by the BIOS.” [Intel*]

• Renew SGX keys
• “The microcode update changes the Security Version Number (SVN) 

associated with the Intel SGX implementation and provides enclaves on the 
platform with new sealing and attestation keys.” [Intel*]
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* https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
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Alternative Solutions?
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Alternative Solutions?
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Buy Chinese Quality Chips,
not cheap American copies!
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Side-Channel Defenses Using  TSX
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Intel TSX
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Intel TSX

• Intel implementation of Hardware Transactional Memory (HTM)

• Designed for high-performance concurrency

• Allows synchronous memory transactions

• TSX is not available on all SGX-enable processors
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SGX Specific Side-Channel Defenses Using TSX

Detecting enclave’s interruption

• Frequent interrupts evidence for side-channel attack

• T-SGX: Uses TSX feature to detect enclave interrupt [Shih et al., NDSS’17]

• Déjà Vu : Uses TSX to detect enclave slowdown [Chen et al., AsiaCCS’17]
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SGX Specific Side-Channel Defenses Using TSX

Detecting cache evictions

• Eviction of the victim’s cache entries could lead to information leakage

• Cloak: Prime cache before accessing sensitive data [Schuster et al., USENIX 2017]
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General Hardware-based Side-Channel Defenses
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Temporal Cache Isolation

• Flush on each context switch

• Ineffective on SMT-enabled systems where 
caches are shared contemporaneously

• E.g., [Costan et al., USENIX Sec’16]
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Cache Partitioning / Coloring 

• Reduces the amount of cache available to individual 
software

• E.g., [Domnister et al., TACO’12]
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Randomized Cache Mappings

• Adversary cannot link cache observation with memory 
locations

• Frequency analysis or predictable access patterns can reveal randomization secret

• E.g., [Wang et al., ISCA’07]
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General Software-only Side-Channel Defenses
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Side-channel resilient 
software design

Monitoring for attack effects

Oblivious execution / ORAM

Example

Problems

• Scatter and gather: 
data accesses effect all
cache lines

• Not applicable to all 
applications

• Manual software 
hardening required

Example

Problems

• Use hardware 
performance counter to 
detect unusually high 
cache eviction rate

• Requires privileged 
entity (not available in 
SGX model)

Oblivious RAM

Problems

• All memory accesses 
(code and/or data) 
indistinguishable

• Too inefficient, ORAM 
metadata needs to be 
protected as well
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Our Recent Work: 
DR.SGX: Automated and Adjustable Side-Channel Protection

for SGX using Data Location Randomization

[Brasser et al., ACSAC 2019]
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DR.SGX: Objective and Approach

• Objective: Similarly to ORAM, make memory accesses 
indistinguishable
• but at a cheaper cost

• without relying on meta-data that needs protection

• Approach: Runtime fine-grained data location randomization 
• format-preserving encryption to determine location of randomized data

• only small constant-size metadata needed

• compiler-based approach (no annotations needed)

• gradual randomization, interleaved with enclave execution

• configurable re-randomization rate
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Randomizing Memory: ORAM vs. DR.SGX
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DR.SGX Re-randomization
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Data Randomization
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Performance Evaluation using Nbench

• Without runtime re-randomization (geometric mean about 4x)
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Performance Evaluation using Nbench

• With different re-randomization windows (geometric mean up to 12x)
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ORAM vs. Dr.SGX: Performance Comparison

• Obfuscuro [Ahmad et al., NDSS 2019]
• Obfuscation engine on Intel SGX

• Implements both, ORAM and oblivious execution

• Performance overheads of 83x on average and up to 220x

• Dr. SGX
• Performance overhead 4x – 12x

• at least one order of magnitude lower than Obfuscuro

• Allows developers to balance between increased side-channel protection and 
the performance cost based on adjustable security parameter
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Conclusion

• Great concepts suffer from implementation problems

• Intel SGX is no exception

• Side-channel attacks are a major threat to Intel SGX
• Were deemed as ‘too difficult’ and were left out of the attacker model

• Research has shown it otherwise

• Attacks still can be improved through more automation 

• Countermeasures
• Range from specific protections against particular problems to generic 

solutions

• Generic solutions, however, come at significant (prohibitive?) cost

• There is a need for more efficient generic solutions
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